File size: 3,560 Bytes
b96e750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import re

"""
    Text clean time
"""
# List of (regular expression, replacement) pairs for abbreviations in french:
_abbreviations = [
    (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
    for x in [
        ("M", "monsieur"),
        ("Mlle", "mademoiselle"),
        ("Mlles", "mesdemoiselles"),
        ("Mme", "Madame"),
        ("Mmes", "Mesdames"),
        ("N.B", "nota bene"),
        ("M", "monsieur"),
        ("p.c.q", "parce que"),
        ("Pr", "professeur"),
        ("qqch", "quelque chose"),
        ("rdv", "rendez-vous"),
        ("max", "maximum"),
        ("min", "minimum"),
        ("no", "numéro"),
        ("adr", "adresse"),
        ("dr", "docteur"),
        ("st", "saint"),
        ("co", "companie"),
        ("jr", "junior"),
        ("sgt", "sergent"),
        ("capt", "capitain"),
        ("col", "colonel"),
        ("av", "avenue"),
        ("av. J.-C", "avant Jésus-Christ"),
        ("apr. J.-C", "après Jésus-Christ"),
        ("art", "article"),
        ("boul", "boulevard"),
        ("c.-à-d", "c’est-à-dire"),
        ("etc", "et cetera"),
        ("ex", "exemple"),
        ("excl", "exclusivement"),
        ("boul", "boulevard"),
    ]
] + [
    (re.compile("\\b%s" % x[0]), x[1])
    for x in [
        ("Mlle", "mademoiselle"),
        ("Mlles", "mesdemoiselles"),
        ("Mme", "Madame"),
        ("Mmes", "Mesdames"),
    ]
]

rep_map = {
    ":": ",",
    ";": ",",
    ",": ",",
    "。": ".",
    "!": "!",
    "?": "?",
    "\n": ".",
    "·": ",",
    "、": ",",
    "...": ".",
    "…": ".",
    "$": ".",
    "“": "",
    "”": "",
    "‘": "",
    "’": "",
    "(": "",
    ")": "",
    "(": "",
    ")": "",
    "《": "",
    "》": "",
    "【": "",
    "】": "",
    "[": "",
    "]": "",
    "—": "",
    "~": "-",
    "~": "-",
    "「": "",
    "」": "",
    "¿": "",
    "¡": "",
}


def collapse_whitespace(text):
    # Regular expression matching whitespace:
    _whitespace_re = re.compile(r"\s+")
    return re.sub(_whitespace_re, " ", text).strip()


def remove_punctuation_at_begin(text):
    return re.sub(r"^[,.!?]+", "", text)


def remove_aux_symbols(text):
    text = re.sub(r"[\<\>\(\)\[\]\"\«\»]+", "", text)
    return text


def replace_symbols(text):
    text = text.replace(";", ",")
    text = text.replace("-", " ")
    text = text.replace(":", ",")
    text = text.replace("&", " et ")
    return text


def expand_abbreviations(text):
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def replace_punctuation(text):
    pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
    replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
    return replaced_text


def text_normalize(text):
    text = expand_abbreviations(text)
    text = replace_punctuation(text)
    text = replace_symbols(text)
    text = remove_aux_symbols(text)
    text = remove_punctuation_at_begin(text)
    text = collapse_whitespace(text)
    text = re.sub(r"([^\.,!\?\-…])$", r"\1", text)
    return text


def french_to_ipa(text, text_tokenizer):
    if type(text) == str:
        text = text_normalize(text)
        phonemes = text_tokenizer(text)
        return phonemes
    else:
        for i, t in enumerate(text):
            text[i] = text_normalize(t)
        return text_tokenizer(text)