File size: 7,825 Bytes
501c69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import requests
import json

# Build model mapping
original_models = [
    # OpenAI Models
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-202201",
    "gpt-4o",
    "gpt-4o-2024-05-13",
    "o1-preview",

    # Claude Models
    "claude",
    "claude-3-5-sonnet",
    "claude-sonnet-3.5",
    "claude-3-5-sonnet-20240620",

    # Meta/LLaMA Models
    "@cf/meta/llama-2-7b-chat-fp16",
    "@cf/meta/llama-2-7b-chat-int8",
    "@cf/meta/llama-3-8b-instruct",
    "@cf/meta/llama-3.1-8b-instruct",
    "@cf/meta-llama/llama-2-7b-chat-hf-lora",
    "llama-3.1-405b",
    "llama-3.1-70b",
    "llama-3.1-8b",
    "meta-llama/Llama-2-7b-chat-hf",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "meta-llama/Llama-3.2-11B-Vision-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-90B-Vision-Instruct",
    "meta-llama/Llama-Guard-3-8B",
    "meta-llama/Meta-Llama-3-70B-Instruct",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",

    # Mistral Models
    "mistral",
    "mistral-large",
    "@cf/mistral/mistral-7b-instruct-v0.1",
    "@cf/mistral/mistral-7b-instruct-v0.2-lora",
    "@hf/mistralai/mistral-7b-instruct-v0.2",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x22B-Instruct-v0.1",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",

    # Qwen Models
    "@cf/qwen/qwen1.5-0.5b-chat",
    "@cf/qwen/qwen1.5-1.8b-chat",
    "@cf/qwen/qwen1.5-7b-chat-awq",
    "@cf/qwen/qwen1.5-14b-chat-awq",
    "Qwen/Qwen2.5-3B-Instruct",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/Qwen2.5-Coder-32B-Instruct",

    # Google/Gemini Models
    "@cf/google/gemma-2b-it-lora",
    "@cf/google/gemma-7b-it-lora",
    "@hf/google/gemma-7b-it",
    "google/gemma-1.1-2b-it",
    "google/gemma-1.1-7b-it",
    "gemini-pro",
    "gemini-1.5-pro",
    "gemini-1.5-pro-latest",
    "gemini-1.5-flash",

    # Cohere Models
    "c4ai-aya-23-35b",
    "c4ai-aya-23-8b",
    "command",
    "command-light",
    "command-light-nightly",
    "command-nightly",
    "command-r",
    "command-r-08-2024",
    "command-r-plus",
    "command-r-plus-08-2024",
    "rerank-english-v2.0",
    "rerank-english-v3.0",
    "rerank-multilingual-v2.0",
    "rerank-multilingual-v3.0",

    # Microsoft Models
    "@cf/microsoft/phi-2",
    "microsoft/DialoGPT-medium",
    "microsoft/Phi-3-medium-4k-instruct",
    "microsoft/Phi-3-mini-4k-instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "microsoft/WizardLM-2-8x22B",

    # Yi Models
    "01-ai/Yi-1.5-34B-Chat",
    "01-ai/Yi-34B-Chat",
]

# Create mapping from simplified model names to original model names
model_mapping = {}
simplified_models = []

for original_model in original_models:
    simplified_name = original_model.split('/')[-1]
    if simplified_name in model_mapping:
        # Conflict detected, handle as per instructions
        print(f"Conflict detected for model name '{simplified_name}'. Excluding '{original_model}' from available models.")
        continue
    model_mapping[simplified_name] = original_model
    simplified_models.append(simplified_name)

def generate(

    model,

    messages,

    temperature=0.7,

    top_p=1.0,

    n=1,

    stream=False,

    stop=None,

    max_tokens=None,

    presence_penalty=0.0,

    frequency_penalty=0.0,

    logit_bias=None,

    user=None,

    timeout=30,

):
    """

    Generates a chat completion using the provided model and messages.

    """
    # Use the simplified model names
    models = simplified_models

    if model not in models:
        raise ValueError(f"Invalid model: {model}. Choose from: {', '.join(models)}")
    
    # Map simplified model name to original model name
    original_model = model_mapping[model]

    api_endpoint = "https://chat.typegpt.net/api/openai/v1/chat/completions"
    
    headers = {
        "authority": "chat.typegpt.net",
        "accept": "application/json, text/event-stream",
        "accept-language": "en-US,en;q=0.9",
        "content-type": "application/json",
        "origin": "https://chat.typegpt.net",
        "referer": "https://chat.typegpt.net/",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
    }
    
    # Payload
    payload = {
        "messages": messages,
        "stream": stream,
        "model": original_model,
        "temperature": temperature,
        "presence_penalty": presence_penalty,
        "frequency_penalty": frequency_penalty,
        "top_p": top_p,
    }

    # Only include max_tokens if it's not None
    if max_tokens is not None:
        payload["max_tokens"] = max_tokens

    # Only include 'stop' if it's not None
    if stop is not None:
        payload["stop"] = stop

    # Check if logit_bias is provided
    if logit_bias is not None:
        payload["logit_bias"] = logit_bias

    # Include 'user' if provided
    if user is not None:
        payload["user"] = user

    # Start the request
    session = requests.Session()
    response = session.post(
        api_endpoint, headers=headers, json=payload, stream=stream, timeout=timeout
    )
    
    if not response.ok:
        raise Exception(f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}")
    
    def stream_response():
        for line in response.iter_lines():
            if line:
                line = line.decode("utf-8")
                if line.startswith("data: "):
                    line = line[6:]  # Remove "data: " prefix
                    if line.strip() == "[DONE]":
                        break
                    try:
                        data = json.loads(line)
                        yield data
                    except json.JSONDecodeError:
                        continue

    if stream:
        return stream_response()
    else:
        return response.json()

if __name__ == "__main__":
    # Example usage
    # model = "claude-3-5-sonnet-20240620"
    # model = "qwen1.5-0.5b-chat"
    # model = "llama-2-7b-chat-fp16"
    model = "gpt-3.5-turbo"
    messages = [
        {"role": "system", "content": "Be Detailed"},
        {"role": "user", "content": "What is the knowledge cut off? Be specific and also specify the month, year and date. If not sure, then provide approximate."}
    ]

    # try:
    #     # For non-streamed response
    #     response = generate(
    #         model=model,
    #         messages=messages,
    #         temperature=0.5,
    #         max_tokens=4000,
    #         stream=False  # Change to True for streaming
    #     )
    #     if 'choices' in response:
    #         reply = response['choices'][0]['message']['content']
    #         print(reply)
    #     else:
    #         print("No response received.")
    # except Exception as e:
    #     print(e)


    try:
        # For streamed response
        response = generate(
            model=model,
            messages=messages,
            temperature=0.5,
            max_tokens=4000,
            stream=True,  # Change to False for non-streamed response
        )
        for data in response:
            if 'choices' in data:
                reply = data['choices'][0]['delta']['content']
                print(reply, end="", flush=True)
            else:
                print("No response received.")
    except Exception as e:
        print(e)