File size: 2,691 Bytes
fd4b460
 
 
 
 
 
 
928abd4
d6ffcce
fd4b460
 
 
 
 
 
 
 
c5fe620
fd4b460
 
 
 
 
 
 
 
 
9a3eba9
 
 
 
 
 
 
 
 
d6ffcce
8557945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3eba9
2310398
 
 
f4a6ecd
2310398
 
 
 
9958c37
2310398
 
fd4b460
2310398
 
 
9958c37
2310398
 
fd4b460
2310398
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import tensorflow as tf
import numpy as np
from scipy.spatial.distance import cosine
import cv2
import os

RECOGNITION_THRESHOLD = 0.1

# Load the embedding model
embedding_model = tf.keras.models.load_model('embedding_model.h5')

# Database to store embeddings and user IDs
user_embeddings = {}

# Preprocess the image
def preprocess_image(image):
    image = cv2.resize(image, (200, 200))  # Resize image to 200x200
    image = tf.keras.applications.resnet50.preprocess_input(image)
    return np.expand_dims(image, axis=0)

# Generate embedding
def generate_embedding(image):
    preprocessed_image = preprocess_image(image)
    return embedding_model.predict(preprocessed_image)[0]

# Register new user
def register_user(image, user_id):
    try:
        embedding = generate_embedding(image)
        user_embeddings[user_id] = embedding
        return f"User {user_id} registered successfully."
    except Exception as e:
        return f"Error during registration: {str(e)}"

# Recognize user
def recognize_user(image):
    try:
        new_embedding = generate_embedding(image)
        min_distance = float('inf')
        recognized_user_id = "Unknown"
        
        for user_id, embedding in user_embeddings.items():
            distance = cosine(new_embedding, embedding)
            print(f"Distance for {user_id}: {distance}")  # Debug: Print distances
            if distance < min_distance:
                min_distance = distance
                recognized_user_id = user_id
        
        print(f"Min distance: {min_distance}")  # Debug: Print minimum distance
        if min_distance > RECOGNITION_THRESHOLD:
            return "User not recognized."
        else:
            return f"Recognized User: {recognized_user_id}"
    except Exception as e:
        return f"Error during recognition: {str(e)}"
        
def main():
    with gr.Blocks() as demo:
        gr.Markdown("Facial Recognition System")
        
        with gr.Tab("Register"):
            with gr.Row():
                img_register = gr.Image()
                user_id = gr.Textbox(label="User ID")
                register_button = gr.Button("Register")
            register_output = gr.Textbox()
            register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output)

        with gr.Tab("Recognize"):
            with gr.Row():
                img_recognize = gr.Image()
                recognize_button = gr.Button("Recognize")
            recognize_output = gr.Textbox()
            recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output)

    demo.launch(share=True)

if __name__ == "__main__":
    main()