Spaces:
Runtime error
Runtime error
File size: 17,190 Bytes
5a9b731 8646e59 5a9b731 46ec42f 5a9b731 46ec42f 5a9b731 6111f27 5a9b731 7d38b5c 5a9b731 87dbf20 49c8e7b 5a9b731 e5d0122 5a9b731 e5d0122 5a9b731 e5d0122 5a9b731 e5d0122 5a9b731 e5d0122 5a9b731 3ad523c 5a9b731 3ad523c 5a9b731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import torch
import torchaudio
#Andy commented: torchaudio.set_audio_backend('soundfile')
#Andy commented: from audio_diffusion_pytorch import DiffusionAE, UNetV0, VDiffusion, VSampler
from audio_encoders_pytorch import MelE1d, TanhBottleneck
#Andy commented: from audiodiffusion.audio_encoder import AudioEncoder
#Andy commented: from IPython.display import Audio, display
#Andy commented: import matplotlib
#Andy commented: import matplotlib.pyplot as plt
import pandas as pd
#Andy commented: from archisound import ArchiSound
print(torch.cuda.is_available(), torch.cuda.device_count())
#Andy removed: import wandb
#Andy removed: wandb.init(project="audio_encoder_attack")
#Andy commented: from tqdm import tqdm
import auraloss
from transformers import EncodecModel, AutoProcessor
import cdpam
import audio_diffusion_attacks_forhf.src.losses as losses
#Andy edited: from audiotools import AudioSignal
#Andy edited step 2: from audiotools.audiotools.core.audio_signal.py import AudioSignal
from audiotools import AudioSignal
from audio_diffusion_attacks_forhf.src.balancer import Balancer
#Andy commented: from gradnorm_pytorch import (
#Andy commented: GradNormLossWeighter,
#Andy commented: MockNetworkWithMultipleLosses
#Andy commented: )
'''Andy commented:
from audiocraft.losses import (
MelSpectrogramL1Loss,
MultiScaleMelSpectrogramLoss,
MRSTFTLoss,
SISNR,
STFTLoss,
)
'''
from audio_diffusion_attacks_forhf.src.music_gen import MusicGenEval
from audio_diffusion_attacks_forhf.src.speech_inference import XTTS_Eval
# From https://pytorch.org/tutorials/beginner/audio_preprocessing_tutorial.html#loading-audio-data-into-tensor
def print_stats(waveform, sample_rate=None, src=None):
if src:
print("-" * 10)
print("Source:", src)
print("-" * 10)
if sample_rate:exit()
print("Sample Rate:", sample_rate)
print("Shape:", tuple(waveform.shape))
print("Dtype:", waveform.dtype)
print(f" - Max: {waveform.max().item():6.3f}")
print(f" - Min: {waveform.min().item():6.3f}")
print(f" - Mean: {waveform.mean().item():6.3f}")
print(f" - Std Dev: {waveform.std().item():6.3f}")
print()
print(waveform)
print()
def si_snr(estimate, reference, epsilon=1e-8):
estimate = estimate - estimate.mean()
reference = reference - reference.mean()
reference_pow = reference.pow(2).mean(axis=1, keepdim=True)
mix_pow = (estimate * reference).mean(axis=1, keepdim=True)
scale = mix_pow / (reference_pow + epsilon)
reference = scale * reference
error = estimate - reference
reference_pow = reference.pow(2)
error_pow = error.pow(2)
reference_pow = reference_pow.mean(axis=1)
error_pow = error_pow.mean(axis=1)
si_snr = 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow)
return si_snr.item()
# Train autoencoder with audio samples
#waveform = torch.randn(2, 2**10) # [batch, in_channels, length]
# loss.backward()
#andy edited: def poison_audio(audio_folder, encoders, audio_difference_weights=[1], method='encoder', weight=1, modality="music"):
def poison_audio(waveform, sample_rate, encoders, audio_difference_weights=[1], method='encoder', weight=1, modality="music"):
'''
Protect a folder of audio.
audio_folder: string, path to folder of audio files. Protected audio files will be saved in that folder.
encoders: encoders to protect against. See initialization at end of file.
'''
for encoder in encoders:
#Andy removed: encoder.to(device='cuda')
encoder.eval()
for p in encoder.parameters():
p.requires_grad = False
audio_len=1000000
#Andy removed: waveform, sample_rate = torchaudio.load(f"test_audio/Texas Sun.mp3")
if modality=="music":
music_gen_eval=MusicGenEval(sample_rate, audio_len)
elif modality=="speech":
music_gen_eval=XTTS_Eval(sample_rate)
processor = AutoProcessor.from_pretrained("facebook/encodec_48khz")
#Andy edited: loss_fn = cdpam.CDPAM(dev='cuda:0')
my_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loss_fn = cdpam.CDPAM(dev=my_device)
for p in loss_fn.model.parameters():
p.requires_grad = False
#Andy removed: for audio_file in tqdm(os.listdir(audio_folder)):
for diff_weight in audio_difference_weights:
#Andy edited: waveform, sample_rate = torchaudio.load(os.path.join(audio_folder, audio_file))
# convert mono to stereo
if waveform.shape[0]==1:
stereo_waveform=torch.zeros((2, waveform.shape[1]))
stereo_waveform[:,:]=waveform
waveform=stereo_waveform
waveform=waveform[:, :audio_len]
inputs = processor(raw_audio=waveform, sampling_rate=processor.sampling_rate, return_tensors="pt")
waveform=inputs['input_values'][0]
#Andy removed: wandb.log({f"unperturbed {audio_name}": wandb.Audio(waveform[0].detach().numpy().flatten(), sample_rate=sample_rate)}, step=0)
waveform=torch.reshape(waveform, (1, waveform.shape[0], waveform.shape[1]))
#Andy removed: waveform=waveform.to(device='cuda')
#Andy edited: inputs["padding_mask"]=inputs["padding_mask"].to(device='cuda')
inputs["padding_mask"]=inputs["padding_mask"]
if method=="encoder":
unperturbed_waveform=waveform.clone().detach()
unperturbed_latents=[]
for encoder in encoders:
unperturbed_latent=encoder(waveform, inputs["padding_mask"]).audio_values.detach()
unperturbed_latents.append(unperturbed_latent)
if method=="style_transfer":
style_waveform, style_sample_rate = torchaudio.load(f"test_audio/Il Sogno Del Marinaio - Nanos' Waltz.mp3")
style_waveform=style_waveform[:, :audio_len]
style_inputs = processor(raw_audio=style_waveform, sampling_rate=processor.sampling_rate, return_tensors="pt")
style_waveform=style_inputs['input_values'][0]
#Andy removed: wandb.log({f"transfer style": wandb.Audio(style_waveform[0].detach().numpy().flatten(), sample_rate=sample_rate)}, step=0)
style_waveform=torch.reshape(style_waveform, (1, style_waveform.shape[0], style_waveform.shape[1]))
#Andy edited: style_waveform=style_waveform.to(device='cuda')
style_waveform=style_waveform
#Andy edited: style_inputs["padding_mask"]=style_inputs["padding_mask"].to(device='cuda')
style_inputs["padding_mask"]=style_inputs["padding_mask"]
# unperturbed_latent=encoder(waveform, inputs["padding_mask"]).audio_values.detach()
unperturbed_waveform=style_waveform.clone().detach()
unperturbed_latents=[]
for encoder in encoders:
unperturbed_latent=encoder(style_waveform, style_inputs["padding_mask"]).audio_values.detach()
unperturbed_latents.append(unperturbed_latent)
noise=torch.normal(torch.zeros(waveform.shape), 0.0)
#Andy removed: noise=noise.to(device='cuda')
noise.requires_grad=True
# waveform=torch.nn.parameter.Parameter(waveform)
weights = {'waveform_diff': weight, 'latent_diff': 1}
balancer = Balancer(weights)
l1loss = torch.nn.L1Loss()
# for p in mel_loss.parameters():
# p.requires_grad = False
optim = torch.optim.AdamW([noise], lr=0.002, weight_decay=0.005)
#optim_diff = torch.optim.Adam([waveform], lr=0.02)
# loss_weighter = GradNormLossWeighter(
# num_losses = 2,
# learning_rate = 0.00002,
# restoring_force_alpha = 0., # 0. is perfectly balanced losses, while anything greater than 1 would account for the relative training rates of each loss. in the paper, they go as high as 3.
# grad_norm_parameters = waveform
# )
downsample = torchaudio.transforms.Resample(sample_rate, 22050)
#Andy removed: downsample=downsample.to(device='cuda')
cos = torch.nn.CosineSimilarity()
mrstft = auraloss.perceptual.FIRFilter()#auraloss.time.SISDRLoss()#torch.nn.functional.l1_loss
#Andy removed: mrstft.to(device='cuda')
waveform_loss = losses.L1Loss()
stft_loss = losses.MultiScaleSTFTLoss()
mel_loss = losses.MelSpectrogramLoss(n_mels=[5, 10, 20, 40, 80, 160, 320],
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
pow=1.0,
clamp_eps=1.0e-5,
mag_weight=0.0)
past_10_latent_losses=[]
latent_weight=1000
latent_diff=0
#Andy edited for testing purposes: number_steps=500
number_steps=5
if diff_weight>-1:
for step in range(number_steps):
latent_diff=0
perturned_waveform=noise+waveform
for encoder_ind in range(len(encoders)):
perturbed_latent = encoders[encoder_ind](perturned_waveform, inputs["padding_mask"]).audio_values
latent_diff+=cos(torch.reshape(perturbed_latent, (1,-1)), torch.reshape(unperturbed_latents[encoder_ind], (1, -1)))
#latent_diff+=1-torch.mean(torch.abs((torch.reshape(perturbed_latent, (1,-1))-torch.reshape(unperturbed_latents[encoder_ind], (1, -1)))))
#latent_diff=-l1loss(perturbed_latent,unperturbed_latents[0])
latent_diff=latent_diff/len(encoders)
#waveform_diff=mrstft(waveform, unperturbed_waveform)
#waveform_diff=mrstft(torch.reshape(waveform, (1,-1)), torch.reshape(unperturbed_waveform, (1,-1)))
#waveform_diff=si_snr(waveform, unperturbed_waveform)
a_waveform=AudioSignal(perturned_waveform, sample_rate)
a_uwaveform=AudioSignal(unperturbed_waveform, sample_rate)
c_waveform_loss=waveform_loss(a_waveform, a_uwaveform)*100
c_stft_loss=stft_loss(a_waveform, a_uwaveform)/6.0
c_mel_loss=mel_loss(a_waveform, a_uwaveform)
l1_loss=torch.mean(torch.abs(perturned_waveform-unperturbed_waveform))
waveform_diff=c_mel_loss#(c_waveform_loss+c_stft_loss+c_mel_loss)/3.0
#loss=100*latent_diff+waveform_diff
# loss=latent_weight*latent_diff+waveform_diff
# past_10_latent_losses.append(latent_diff.detach().cpu().numpy().item())
# if len(past_10_latent_losses)>10:
# mean=sum(past_10_latent_losses)/len(past_10_latent_losses)
# if mean<latent_diff:
# latent_weight=latent_weight*1.1
# elif mean>latent_diff*1.01:
# latent_weight=latent_weight/1.1
# past_10_latent_losses=past_10_latent_losses[1:]
# print('latent_weight', latent_weight)
# if latent_diff>0.85:
# loss=1500*latent_diff+waveform_diff
#loss=1000*latent_diff+waveform_diff
# if method=='encoder':
# if latent_diff>0.75:
# loss=1000*latent_diff+waveform_diff
# print('latent')
# else:
loss=waveform_diff+latent_diff
# print('waveform_diff')
# elif method=='style_transfer':
# loss=latent_diff
'''Andy removed:
if step%10==0 or step==number_steps-1:
wandb.log({"loss": loss, "latent_diff": latent_diff, 'waveform_diff': waveform_diff}, step=step)
if step%100==0 or step==number_steps-1:
audio_save=torch.reshape((noise+waveform), (2, waveform.shape[2]))[0, :audio_len].detach().cpu().numpy().flatten()
wandb.log({f"perturbed cos_dist_{latent_diff}_diff_weight_{diff_weight}_{audio_name}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
if step%100==0 or step==number_steps-1:
music_gen_eval_dict, unprotected_gen, protected_gen=music_gen_eval.eval(waveform, noise+waveform)
audio_save=torch.reshape(unprotected_gen, (2, unprotected_gen.shape[1]))[0].detach().cpu().numpy().flatten()
wandb.log({f"unprotected_gen_{latent_diff}_diff_weight_{diff_weight}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
audio_save=torch.reshape(protected_gen, (2, protected_gen.shape[1]))[0].detach().cpu().numpy().flatten()
wandb.log({f"protected_gen_{latent_diff}_diff_weight_{diff_weight}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
wandb.log(music_gen_eval_dict, step=step)
'''
# if c_mel_loss>0.5:
# loss=waveform_diff
# else:
# loss=latent_diff
# noise=noise*0.99
loss_dict = {}
loss_dict['waveform_diff'] = waveform_diff
loss_dict['latent_diff'] = latent_diff[0]
effective_loss = balancer.backward(loss_dict, noise)
# loss=latent_diff
# loss.backward()
#loss_weighter.backward([latent_diff, c_mel_loss])
# torch.nn.utils.clip_grad_norm_(waveform, 10e-8)
optim.step()
optim.zero_grad()
# if latent_diff>0.5:
# latent_diff.backward()
# optim_diff.step()
# optim_diff.zero_grad()
# else:
# loss=waveform_diff
# loss.backward()
# optim_diff.step()
# optim_diff.zero_grad()
encoder.zero_grad()
mel_loss.zero_grad()
# with torch.no_grad():
# noise_clip=0.25
# noise.clamp_(-noise_clip, noise_clip)
# print('noise max', torch.max(noise))
print('step', step, 'loss', loss.item(), 'latent loss', latent_diff.item(), 'audio loss', waveform_diff.item(), 'c_waveform_loss', c_waveform_loss.item(), 'c_stft_loss', c_stft_loss.item(), 'l1_loss', l1_loss.item())
latent_diff=latent_diff.detach().item()
#Andy removed: audio_save=torch.reshape((noise+waveform), (2, waveform.shape[2]))[0, :audio_len].detach().cpu().numpy().flatten()
#Andy removed: wandb.log({f"perturbed cos_dist_{latent_diff}_diff_weight_{diff_weight}_{audio_name}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
#Andy moved from inside the loop:
music_gen_eval_dict, unprotected_gen, protected_gen=music_gen_eval.eval(waveform, noise+waveform)
#Andy edited: torchaudio.save(os.path.join(audio_folder, f"protected_{audio_name}_{audio_len}_mel_{latent_diff}_diff_weight_{waveform_diff}"), torch.reshape((noise+waveform).detach().cpu(), (2, waveform.shape[2])), sample_rate)
return (torch.reshape((noise+waveform).detach().cpu(), (2, waveform.shape[2]))), music_gen_eval_dict, unprotected_gen, protected_gen
# encoders = [ArchiSound.from_pretrained('autoencoder1d-AT-v1'),
# ArchiSound.from_pretrained("dmae1d-ATC64-v2"),
# ArchiSound.from_pretrained("dmae1d-ATC32-v3"),
# AudioEncoder.from_pretrained("teticio/audio-encoder"),
encoders = [EncodecModel.from_pretrained("facebook/encodec_48khz")]
audio_difference_weights=[1]
#Andy commented out: poison_audio(<audio_folder>, encoders, [1], method="encoder", weight=weight)
#Andy removed: wandb.finish()
|