File size: 17,190 Bytes
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8646e59
5a9b731
 
 
 
 
 
 
 
46ec42f
5a9b731
 
 
 
 
 
 
46ec42f
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6111f27
5a9b731
 
 
 
 
7d38b5c
5a9b731
 
 
 
 
87dbf20
49c8e7b
 
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d0122
 
 
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d0122
 
 
 
5a9b731
 
 
 
 
 
 
 
 
 
 
e5d0122
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d0122
5a9b731
 
e5d0122
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad523c
5a9b731
 
3ad523c
 
 
 
 
5a9b731
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import torchaudio
#Andy commented: torchaudio.set_audio_backend('soundfile')
#Andy commented: from audio_diffusion_pytorch import DiffusionAE, UNetV0, VDiffusion, VSampler
from audio_encoders_pytorch import MelE1d, TanhBottleneck
#Andy commented: from audiodiffusion.audio_encoder import AudioEncoder
#Andy commented: from IPython.display import Audio, display
#Andy commented: import matplotlib
#Andy commented: import matplotlib.pyplot as plt
import pandas as pd
#Andy commented: from archisound import ArchiSound
print(torch.cuda.is_available(), torch.cuda.device_count())
#Andy removed: import wandb
#Andy removed: wandb.init(project="audio_encoder_attack")
#Andy commented: from tqdm import tqdm
import auraloss
from transformers import EncodecModel, AutoProcessor
import cdpam
import audio_diffusion_attacks_forhf.src.losses as losses
#Andy edited: from audiotools import AudioSignal
#Andy edited step 2: from audiotools.audiotools.core.audio_signal.py import AudioSignal
from audiotools import AudioSignal
from audio_diffusion_attacks_forhf.src.balancer import Balancer
#Andy commented: from gradnorm_pytorch import (
    #Andy commented: GradNormLossWeighter,
    #Andy commented: MockNetworkWithMultipleLosses
#Andy commented: )
'''Andy commented:
from audiocraft.losses import (
    MelSpectrogramL1Loss,
    MultiScaleMelSpectrogramLoss,
    MRSTFTLoss,
    SISNR,
    STFTLoss,
)
'''
from audio_diffusion_attacks_forhf.src.music_gen import MusicGenEval
from audio_diffusion_attacks_forhf.src.speech_inference import XTTS_Eval

# From https://pytorch.org/tutorials/beginner/audio_preprocessing_tutorial.html#loading-audio-data-into-tensor
def print_stats(waveform, sample_rate=None, src=None):
  if src:
    print("-" * 10)
    print("Source:", src)
    print("-" * 10)
  if sample_rate:exit()
  print("Sample Rate:", sample_rate)
  print("Shape:", tuple(waveform.shape))
  print("Dtype:", waveform.dtype)
  print(f" - Max:     {waveform.max().item():6.3f}")
  print(f" - Min:     {waveform.min().item():6.3f}")
  print(f" - Mean:    {waveform.mean().item():6.3f}")
  print(f" - Std Dev: {waveform.std().item():6.3f}")
  print()
  print(waveform)
  print()

def si_snr(estimate, reference, epsilon=1e-8):
    estimate = estimate - estimate.mean()
    reference = reference - reference.mean()
    reference_pow = reference.pow(2).mean(axis=1, keepdim=True)
    mix_pow = (estimate * reference).mean(axis=1, keepdim=True)
    scale = mix_pow / (reference_pow + epsilon)

    reference = scale * reference
    error = estimate - reference

    reference_pow = reference.pow(2)
    error_pow = error.pow(2)

    reference_pow = reference_pow.mean(axis=1)
    error_pow = error_pow.mean(axis=1)

    si_snr = 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow)
    return si_snr.item()

# Train autoencoder with audio samples
#waveform = torch.randn(2, 2**10) # [batch, in_channels, length]

# loss.backward()

#andy edited: def poison_audio(audio_folder, encoders, audio_difference_weights=[1], method='encoder', weight=1, modality="music"):
def poison_audio(waveform, sample_rate, encoders, audio_difference_weights=[1], method='encoder', weight=1, modality="music"):
    '''
    Protect a folder of audio.
    audio_folder: string, path to folder of audio files. Protected audio files will be saved in that folder.
    encoders: encoders to protect against. See initialization at end of file.
    '''
    for encoder in encoders:
        #Andy removed: encoder.to(device='cuda')
        encoder.eval()
        for p in encoder.parameters():
            p.requires_grad = False
    
    audio_len=1000000
    #Andy removed: waveform, sample_rate = torchaudio.load(f"test_audio/Texas Sun.mp3")
    if modality=="music":
        music_gen_eval=MusicGenEval(sample_rate, audio_len)
    elif modality=="speech":
        music_gen_eval=XTTS_Eval(sample_rate)
    processor = AutoProcessor.from_pretrained("facebook/encodec_48khz")
    #Andy edited: loss_fn = cdpam.CDPAM(dev='cuda:0')
    my_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    loss_fn = cdpam.CDPAM(dev=my_device)
    for p in loss_fn.model.parameters():
        p.requires_grad = False
        
    
    #Andy removed: for audio_file in tqdm(os.listdir(audio_folder)):
        for diff_weight in audio_difference_weights:
            #Andy edited: waveform, sample_rate = torchaudio.load(os.path.join(audio_folder, audio_file))
            # convert mono to stereo
            if waveform.shape[0]==1:
                stereo_waveform=torch.zeros((2, waveform.shape[1]))
                stereo_waveform[:,:]=waveform
                waveform=stereo_waveform
            waveform=waveform[:, :audio_len]
            inputs = processor(raw_audio=waveform, sampling_rate=processor.sampling_rate, return_tensors="pt")
            waveform=inputs['input_values'][0]
            #Andy removed: wandb.log({f"unperturbed {audio_name}": wandb.Audio(waveform[0].detach().numpy().flatten(), sample_rate=sample_rate)}, step=0)
            waveform=torch.reshape(waveform, (1, waveform.shape[0], waveform.shape[1]))
            #Andy removed: waveform=waveform.to(device='cuda')
            #Andy edited: inputs["padding_mask"]=inputs["padding_mask"].to(device='cuda')
            inputs["padding_mask"]=inputs["padding_mask"]
            
            if method=="encoder":
                unperturbed_waveform=waveform.clone().detach()
                unperturbed_latents=[]
                for encoder in encoders:
                    unperturbed_latent=encoder(waveform, inputs["padding_mask"]).audio_values.detach()
                    unperturbed_latents.append(unperturbed_latent)
            if method=="style_transfer":
                style_waveform, style_sample_rate = torchaudio.load(f"test_audio/Il Sogno Del Marinaio - Nanos' Waltz.mp3")
                style_waveform=style_waveform[:, :audio_len]
                style_inputs = processor(raw_audio=style_waveform, sampling_rate=processor.sampling_rate, return_tensors="pt")
                style_waveform=style_inputs['input_values'][0]
                #Andy removed: wandb.log({f"transfer style": wandb.Audio(style_waveform[0].detach().numpy().flatten(), sample_rate=sample_rate)}, step=0)
                style_waveform=torch.reshape(style_waveform, (1, style_waveform.shape[0], style_waveform.shape[1]))
                #Andy edited: style_waveform=style_waveform.to(device='cuda')
                style_waveform=style_waveform
                #Andy edited: style_inputs["padding_mask"]=style_inputs["padding_mask"].to(device='cuda')
                style_inputs["padding_mask"]=style_inputs["padding_mask"]
                # unperturbed_latent=encoder(waveform, inputs["padding_mask"]).audio_values.detach()
                unperturbed_waveform=style_waveform.clone().detach()
                unperturbed_latents=[]
                for encoder in encoders:
                    unperturbed_latent=encoder(style_waveform, style_inputs["padding_mask"]).audio_values.detach()
                    unperturbed_latents.append(unperturbed_latent)
                
                
                
                            
            noise=torch.normal(torch.zeros(waveform.shape), 0.0)
            #Andy removed: noise=noise.to(device='cuda')
            noise.requires_grad=True
            # waveform=torch.nn.parameter.Parameter(waveform)
            
            weights = {'waveform_diff': weight, 'latent_diff': 1}
            balancer = Balancer(weights)
            l1loss = torch.nn.L1Loss()
        
            # for p in mel_loss.parameters():
            #     p.requires_grad = False
            optim = torch.optim.AdamW([noise], lr=0.002, weight_decay=0.005)
            #optim_diff = torch.optim.Adam([waveform], lr=0.02)
            
            # loss_weighter = GradNormLossWeighter(
            #     num_losses = 2,
            #     learning_rate = 0.00002,
            #     restoring_force_alpha = 0.,                  # 0. is perfectly balanced losses, while anything greater than 1 would account for the relative training rates of each loss. in the paper, they go as high as 3.
            #     grad_norm_parameters = waveform
            # )
            
            downsample = torchaudio.transforms.Resample(sample_rate, 22050)
            #Andy removed: downsample=downsample.to(device='cuda')
            cos = torch.nn.CosineSimilarity()
            mrstft = auraloss.perceptual.FIRFilter()#auraloss.time.SISDRLoss()#torch.nn.functional.l1_loss
            #Andy removed: mrstft.to(device='cuda')
            
            waveform_loss = losses.L1Loss()
            stft_loss = losses.MultiScaleSTFTLoss()
            
            mel_loss = losses.MelSpectrogramLoss(n_mels=[5, 10, 20, 40, 80, 160, 320],
                                                 window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
                                                 mel_fmin=[0, 0, 0, 0, 0, 0, 0],
                                                 pow=1.0,
                                                 clamp_eps=1.0e-5,
                                                 mag_weight=0.0)
            
            
            
            past_10_latent_losses=[]
            latent_weight=1000
            
            latent_diff=0
            #Andy edited for testing purposes: number_steps=500
            number_steps=5
            if diff_weight>-1:
                for step in range(number_steps):
                    
                    
                    latent_diff=0
                    perturned_waveform=noise+waveform
                    for encoder_ind in range(len(encoders)):
                        perturbed_latent = encoders[encoder_ind](perturned_waveform, inputs["padding_mask"]).audio_values
                        latent_diff+=cos(torch.reshape(perturbed_latent, (1,-1)), torch.reshape(unperturbed_latents[encoder_ind], (1, -1)))
                        #latent_diff+=1-torch.mean(torch.abs((torch.reshape(perturbed_latent, (1,-1))-torch.reshape(unperturbed_latents[encoder_ind], (1, -1)))))
                        #latent_diff=-l1loss(perturbed_latent,unperturbed_latents[0])
                    latent_diff=latent_diff/len(encoders)
                    #waveform_diff=mrstft(waveform, unperturbed_waveform)
                    #waveform_diff=mrstft(torch.reshape(waveform, (1,-1)), torch.reshape(unperturbed_waveform, (1,-1)))
                    #waveform_diff=si_snr(waveform, unperturbed_waveform)
                    
                    a_waveform=AudioSignal(perturned_waveform, sample_rate)
                    a_uwaveform=AudioSignal(unperturbed_waveform, sample_rate)
                    
                    c_waveform_loss=waveform_loss(a_waveform, a_uwaveform)*100
                    c_stft_loss=stft_loss(a_waveform, a_uwaveform)/6.0
                    c_mel_loss=mel_loss(a_waveform, a_uwaveform)
                    l1_loss=torch.mean(torch.abs(perturned_waveform-unperturbed_waveform))
                    
                    

                    
                    waveform_diff=c_mel_loss#(c_waveform_loss+c_stft_loss+c_mel_loss)/3.0
                    
                    #loss=100*latent_diff+waveform_diff
                    # loss=latent_weight*latent_diff+waveform_diff
                    # past_10_latent_losses.append(latent_diff.detach().cpu().numpy().item())
                    # if len(past_10_latent_losses)>10:
                    #     mean=sum(past_10_latent_losses)/len(past_10_latent_losses)
                    #     if mean<latent_diff:
                    #         latent_weight=latent_weight*1.1
                    #     elif mean>latent_diff*1.01:
                    #         latent_weight=latent_weight/1.1
                    #     past_10_latent_losses=past_10_latent_losses[1:]
                    # print('latent_weight', latent_weight)
                    
                    # if latent_diff>0.85:
                    #     loss=1500*latent_diff+waveform_diff
                    
                    #loss=1000*latent_diff+waveform_diff
                    # if method=='encoder':
                    #     if latent_diff>0.75:
                    #         loss=1000*latent_diff+waveform_diff
                    #         print('latent')
                    #     else:
                    loss=waveform_diff+latent_diff
                    #         print('waveform_diff')
                    # elif method=='style_transfer':
                    #     loss=latent_diff
                    
                    '''Andy removed:
                    if step%10==0 or step==number_steps-1:
                        wandb.log({"loss": loss, "latent_diff": latent_diff, 'waveform_diff': waveform_diff}, step=step)
                    if step%100==0 or step==number_steps-1:
                        audio_save=torch.reshape((noise+waveform), (2, waveform.shape[2]))[0, :audio_len].detach().cpu().numpy().flatten()
                        wandb.log({f"perturbed cos_dist_{latent_diff}_diff_weight_{diff_weight}_{audio_name}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
                    if step%100==0 or step==number_steps-1:
                        music_gen_eval_dict, unprotected_gen, protected_gen=music_gen_eval.eval(waveform, noise+waveform)
                        audio_save=torch.reshape(unprotected_gen, (2, unprotected_gen.shape[1]))[0].detach().cpu().numpy().flatten()
                        wandb.log({f"unprotected_gen_{latent_diff}_diff_weight_{diff_weight}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
                        audio_save=torch.reshape(protected_gen, (2, protected_gen.shape[1]))[0].detach().cpu().numpy().flatten()
                        wandb.log({f"protected_gen_{latent_diff}_diff_weight_{diff_weight}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)
                        wandb.log(music_gen_eval_dict, step=step)
                        '''
                    # if c_mel_loss>0.5:
                    #     loss=waveform_diff
                    # else:
                    #     loss=latent_diff

                    # noise=noise*0.99
                    
                    
                    loss_dict = {}
                    loss_dict['waveform_diff'] = waveform_diff
                    loss_dict['latent_diff'] = latent_diff[0]
                    effective_loss = balancer.backward(loss_dict, noise)
                    # loss=latent_diff
                    # loss.backward()
                    #loss_weighter.backward([latent_diff, c_mel_loss])
                    
                    # torch.nn.utils.clip_grad_norm_(waveform, 10e-8)
                    optim.step()
                    optim.zero_grad()
                    
  
                    # if latent_diff>0.5:
                    # latent_diff.backward()
                    # optim_diff.step()
                    # optim_diff.zero_grad()
                    # else:
                    #     loss=waveform_diff
                    #     loss.backward()
                    #     optim_diff.step()
                    #     optim_diff.zero_grad()
                    
                    encoder.zero_grad()
                    mel_loss.zero_grad()
                    # with torch.no_grad():
                    #     noise_clip=0.25
                    #     noise.clamp_(-noise_clip, noise_clip)
                    # print('noise max', torch.max(noise))
                    
                    print('step', step, 'loss', loss.item(), 'latent loss', latent_diff.item(), 'audio loss', waveform_diff.item(), 'c_waveform_loss', c_waveform_loss.item(), 'c_stft_loss', c_stft_loss.item(), 'l1_loss', l1_loss.item())
                latent_diff=latent_diff.detach().item()
            
            #Andy removed: audio_save=torch.reshape((noise+waveform), (2, waveform.shape[2]))[0, :audio_len].detach().cpu().numpy().flatten()
            #Andy removed: wandb.log({f"perturbed cos_dist_{latent_diff}_diff_weight_{diff_weight}_{audio_name}": wandb.Audio(audio_save, sample_rate=sample_rate)}, step=step)

            #Andy moved from inside the loop:
            music_gen_eval_dict, unprotected_gen, protected_gen=music_gen_eval.eval(waveform, noise+waveform)

            #Andy edited: torchaudio.save(os.path.join(audio_folder, f"protected_{audio_name}_{audio_len}_mel_{latent_diff}_diff_weight_{waveform_diff}"), torch.reshape((noise+waveform).detach().cpu(), (2, waveform.shape[2])), sample_rate)
            return (torch.reshape((noise+waveform).detach().cpu(), (2, waveform.shape[2]))), music_gen_eval_dict, unprotected_gen, protected_gen

# encoders = [ArchiSound.from_pretrained('autoencoder1d-AT-v1'),
#             ArchiSound.from_pretrained("dmae1d-ATC64-v2"),
#              ArchiSound.from_pretrained("dmae1d-ATC32-v3"),
#              AudioEncoder.from_pretrained("teticio/audio-encoder"),
encoders = [EncodecModel.from_pretrained("facebook/encodec_48khz")]
audio_difference_weights=[1]
#Andy commented out: poison_audio(<audio_folder>, encoders, [1], method="encoder", weight=weight)
#Andy removed: wandb.finish()