File size: 14,473 Bytes
23bc584 e99cb11 e4c4938 e99cb11 e4c4938 e99cb11 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 646056d e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 23bc584 e4c4938 646056d e4c4938 3e4a324 e4c4938 23bc584 e4c4938 3e4a324 e4c4938 23bc584 e4c4938 3e4a324 e4c4938 23bc584 e99cb11 e4c4938 3e4a324 e4c4938 23bc584 e4c4938 646056d e4c4938 e99cb11 23bc584 e4c4938 3e4a324 e4c4938 92258a3 e4c4938 92258a3 e4c4938 92258a3 e4c4938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import os
import cv2
import numpy as np
import onnxruntime as ort
import tempfile
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
import gradio as gr
import time
from typing import List, Dict, Tuple, Optional
# -------------------
# Model Initialization
# -------------------
MODEL_PATH = "best2.onnx"
SEVERITY_PATH = "severity_model.onnx"
PROVIDERS = ["CPUExecutionProvider"]
# Initialize sessions (will be loaded when needed)
yolo_sess = None
severity_sess = None
SEVERITY_LABELS = ["Mild", "Moderate", "Severe"]
REPAIR_SUGGESTIONS = {
"Mild": "Routine maintenance recommended.",
"Moderate": "Schedule repair soon.",
"Severe": "Immediate repair required!"
}
# Colors per crack type (BGR for OpenCV)
TYPE_COLORS = {
"Transverse": (60, 200, 60), # green
"Longitudinal": (200, 120, 0), # blue-ish/orange-ish (distinct)
"Alligator": (0, 165, 255), # orange
"Other": (180, 180, 180) # gray
}
# -------------------
# Model Loading
# -------------------
def load_models():
"""Load models on demand"""
global yolo_sess, severity_sess
if yolo_sess is None:
try:
yolo_sess = ort.InferenceSession(MODEL_PATH, providers=PROVIDERS)
except Exception as e:
raise RuntimeError(f"Failed to load YOLO model: {e}")
if severity_sess is None:
try:
severity_sess = ort.InferenceSession(SEVERITY_PATH, providers=PROVIDERS)
except Exception as e:
raise RuntimeError(f"Failed to load severity model: {e}")
return yolo_sess.get_inputs()[0].name, severity_sess.get_inputs()[0].name
# -------------------
# Utilities
# -------------------
def severity_infer(bgr_crop):
if bgr_crop is None or bgr_crop.size == 0:
return None
_, severity_in_name = load_models()
rgb = cv2.cvtColor(bgr_crop, cv2.COLOR_BGR2RGB)
rgb = cv2.resize(rgb, (224, 224))
inp = rgb.transpose(2, 0, 1)[None].astype(np.float32) / 255.0
out = severity_sess.run(None, {severity_in_name: inp})[0]
cls = int(np.argmax(out, axis=1)[0])
return SEVERITY_LABELS[cls] if 0 <= cls < len(SEVERITY_LABELS) else str(cls)
def nms(dets, iou_thresh=0.5):
if len(dets) == 0:
return []
boxes = np.array([[x1, y1, x2, y2, conf] for (x1, y1, x2, y2, conf) in dets], dtype=float)
x1, y1, x2, y2, scores = boxes.T
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-6)
inds = np.where(iou <= iou_thresh)[0]
order = order[inds + 1]
return [tuple(map(lambda v: float(v) if isinstance(v, np.generic) else v, dets[i])) for i in keep]
def merge_nearby_boxes(dets, dist_thresh=50):
if not dets:
return []
merged = []
used = set()
centers = [((x1+x2)/2, (y1+y2)/2) for (x1,y1,x2,y2,_) in dets]
for i, (x1, y1, x2, y2, conf) in enumerate(dets):
if i in used:
continue
group = [(x1, y1, x2, y2, conf)]
used.add(i)
cx1, cy1 = centers[i]
for j in range(i+1, len(dets)):
if j in used:
continue
cx2, cy2 = centers[j]
if np.hypot(cx2 - cx1, cy2 - cy1) < dist_thresh:
group.append(dets[j])
used.add(j)
gx1 = min(g[0] for g in group)
gy1 = min(g[1] for g in group)
gx2 = max(g[2] for g in group)
gy2 = max(g[3] for g in group)
gconf = max(g[4] for g in group)
merged.append((int(gx1), int(gy1), int(gx2), int(gy2), float(gconf)))
return merged
def heuristic_crack_type(x1, y1, x2, y2, dets, idx):
"""Transverse (wide & short), Longitudinal (tall & thin), Alligator (dense overlaps), Other."""
w = max(1, x2 - x1)
h = max(1, y2 - y1)
aspect_ratio = w / h
# Count strong overlaps with other boxes -> "Alligator" candidate
overlaps = 0
area = w * h
for j, (xx1, yy1, xx2, yy2, _) in enumerate(dets):
if j == idx:
continue
inter_x1 = max(x1, xx1)
inter_y1 = max(y1, yy1)
inter_x2 = min(x2, xx2)
inter_y2 = min(y2, yy2)
inter = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)
if inter > 0.40 * area: # stricter to avoid false alligator
overlaps += 1
if overlaps >= 3:
return "Alligator"
if aspect_ratio >= 2.2: # wide and relatively short
return "Transverse"
if aspect_ratio <= 0.8: # tall and relatively narrow
return "Longitudinal"
return "Other"
def yolo_infer(bgr):
"""Runs the ONNX YOLO head (exported variant) and decodes simple [x,y,w,h,conf] rows."""
yolo_in_name, _ = load_models()
img = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
resized = cv2.resize(img, (640, 640))
inp = resized.transpose(2, 0, 1)[None].astype(np.float32) / 255.0
out = yolo_sess.run(None, {yolo_in_name: inp})[0][0]
dets = []
H, W = bgr.shape[:2]
for row in out:
x, y, bw, bh, conf = row[:5]
if conf < 0.50: # slightly stricter to cut clutter
continue
# map from 640 space back to original resolution
x1 = int((x - bw/2) * W / 640)
y1 = int((y - bh/2) * H / 640)
x2 = int((x + bw/2) * W / 640)
y2 = int((y + bh/2) * H / 640)
# clamp
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(W-1, x2), min(H-1, y2)
if x2 > x1 and y2 > y1:
dets.append((x1, y1, x2, y2, float(conf)))
# Clean-up: NMS then merge very close boxes
dets = nms(dets, iou_thresh=0.50)
dets = merge_nearby_boxes(dets, dist_thresh=50)
return dets
# -------------------
# Drawing & Reporting
# -------------------
def draw_detection(img, bbox, label, crack_type):
x1, y1, x2, y2 = bbox
color = TYPE_COLORS.get(crack_type, TYPE_COLORS["Other"])
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
# text background
(tw, th), base = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(img, (x1, max(0, y1 - th - 8)), (x1 + tw + 6, y1), color, -1)
cv2.putText(img, label, (x1 + 3, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2, cv2.LINE_AA)
def make_report(detections):
"""
detections: list of dicts with keys:
type, severity, conf, bbox, suggestion
Returns nicely formatted multiline string.
"""
if not detections:
return "No cracks detected."
lines = []
lines.append("=== Detection Report ===")
for i, d in enumerate(detections, 1):
x1, y1, x2, y2 = d["bbox"]
lines.append(f"[{i}] Type: {d['type']} | Severity: {d['severity']} | Score: {d['conf']:.2f} | "
f"BBox: ({x1},{y1})β({x2},{y2})")
if d["suggestion"]:
lines.append(f" β Repair: {d['suggestion']}")
# Aggregates
type_counts = Counter(d["type"] for d in detections)
sev_counts = Counter(d["severity"] for d in detections if d["severity"] is not None)
lines.append("\n--- Totals by Crack Type ---")
for k, v in type_counts.items():
lines.append(f"{k}: {v}")
lines.append("\n--- Totals by Severity ---")
for k, v in sev_counts.items():
lines.append(f"{k}: {v}")
return "\n".join(lines)
# -------------------
# Processing Functions for Gradio
# -------------------
def process_image_gradio(image):
"""Process image for Gradio interface"""
# Convert PIL image to OpenCV format
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
dets = yolo_infer(image_cv)
detections = []
for idx, (x1, y1, x2, y2, conf) in enumerate(dets):
crop = image_cv[y1:y2, x1:x2]
sev = severity_infer(crop)
ctype = heuristic_crack_type(x1, y1, x2, y2, dets, idx)
suggestion = REPAIR_SUGGESTIONS.get(sev, "")
label = f"{ctype} | {sev} ({conf:.2f})"
draw_detection(image_cv, (x1, y1, x2, y2), label, ctype)
detections.append({
"bbox": (x1, y1, x2, y2),
"conf": conf,
"type": ctype,
"severity": sev,
"suggestion": suggestion
})
# Convert back to RGB for display
result_image = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
# Generate report
report = make_report(detections)
return result_image, report
def process_video_gradio(video_path, progress=gr.Progress()):
"""Process video for Gradio interface"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video file"
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS) or 25
W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Create output video file
output_path = "processed_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(output_path, fourcc, fps, (W, H))
collected = []
frame_count = 0
# Track progress
progress(0, desc="Starting video processing...")
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Update progress - correct format
if frame_count % 10 == 0: # Update every 10 frames to reduce overhead
progress(frame_count / total_frames, desc=f"Processing frame {frame_count}/{total_frames}")
# Process frame
dets = yolo_infer(frame)
frame_detections = []
for idx, (x1, y1, x2, y2, conf) in enumerate(dets):
crop = frame[y1:y2, x1:x2]
sev = severity_infer(crop)
ctype = heuristic_crack_type(x1, y1, x2, y2, dets, idx)
suggestion = REPAIR_SUGGESTIONS.get(sev, "")
label = f"{ctype} | {sev} ({conf:.2f})"
draw_detection(frame, (x1, y1, x2, y2), label, ctype)
frame_detections.append({
"bbox": (x1, y1, x2, y2),
"conf": conf,
"type": ctype,
"severity": sev,
"suggestion": suggestion,
"frame": frame_count
})
collected.extend(frame_detections)
writer.write(frame)
cap.release()
writer.release()
# Generate report
report = make_report(collected)
report += f"\n\n--- Video Summary ---\n"
report += f"Total frames processed: {frame_count}\n"
report += f"Total detections: {len(collected)}"
progress(1.0, desc="Video processing complete!")
return output_path, report
# -------------------
# Gradio Interface
# -------------------
def create_gradio_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="Crack Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ποΈ Crack Detection System")
gr.Markdown("Upload an image or video to detect and analyze cracks with severity assessment and crack types.")
with gr.Tab("Image Detection"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
image_btn = gr.Button("Detect Cracks", variant="primary")
with gr.Column():
image_output = gr.Image(label="Detection Results")
image_report = gr.Textbox(label="Detection Report", lines=10)
image_btn.click(
fn=process_image_gradio,
inputs=image_input,
outputs=[image_output, image_report]
)
with gr.Tab("Video Detection"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
video_btn = gr.Button("Process Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Processed Video")
video_report = gr.Textbox(label="Detection Report", lines=15)
video_btn.click(
fn=process_video_gradio,
inputs=video_input,
outputs=[video_output, video_report]
)
with gr.Tab("About"):
gr.Markdown("""
## About this App
This Crack Detection System uses deep learning models to:
- **Detect cracks using YOLOv5** in images and videos
- **Classify crack types**: Transverse, Longitudinal, Alligator, Other
- **Assess severity using ResNet-18**: Mild, Moderate, Severe
- **Provide repair suggestions**
### How to use:
1. Upload an image or video
2. Click the detection button
3. View results with bounding boxes and detailed report
### Crack Types:
- **Transverse**: Wide and short cracks perpendicular to road direction
- **Longitudinal**: Tall and narrow cracks parallel to road direction
- **Alligator**: Network of interconnected cracks resembling alligator skin
- **Other**: Cracks that don't fit the above categories
### Severity Levels:
- **Mild**: Routine maintenance recommended
- **Moderate**: Schedule repair soon
- **Severe**: Immediate repair required!
""")
return demo
# -------------------
# Main Execution
# -------------------
if __name__ == "__main__":
# Pre-load models for faster first inference
print("Loading models...")
load_models()
print("Models loaded successfully!")
# Create and launch Gradio app
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |