Spaces:
Sleeping
Sleeping
File size: 10,691 Bytes
98bf2c9 534b16a 98bf2c9 534b16a 936b2ba 534b16a 98bf2c9 534b16a 98bf2c9 534b16a 98bf2c9 534b16a 98bf2c9 534b16a 98bf2c9 dec4c30 98bf2c9 534b16a 98bf2c9 534b16a 98bf2c9 dec4c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from fastapi import APIRouter, Request, UploadFile, File, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from starlette.background import BackgroundTask
import shutil
import os
import uuid
from pathlib import Path
from typing import Optional
import json
import base64
from ultralytics import YOLO
import cv2
import numpy as np
from ..utils.llm_client import GroqAnalyzer
# Templates directory
TEMPLATES_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "templates")
templates = Jinja2Templates(directory=TEMPLATES_DIR)
router = APIRouter()
UPLOAD_DIR = os.path.join("/tmp", "uploads")
RESULTS_DIR = os.path.join("/tmp", "results")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)
ALLOWED_EXTENSIONS = {"jpg", "jpeg", "png", "tiff", "tif"}
# Model paths
# DAMAGE_MODEL_PATH = os.path.join("/tmp", "models", "damage", "weights", "weights", "best.pt") # Commented for now
PARTS_MODEL_PATH = os.path.join("/tmp", "models", "parts", "weights", "weights", "best.pt")
# Class names for parts
PARTS_CLASS_NAMES = ['headlamp', 'front_bumper', 'hood', 'door', 'rear_bumper']
# Initialize GroqAnalyzer
groq_analyzer = GroqAnalyzer()
# Helper: Run YOLO inference and return results
def run_yolo_inference(model_path, image_path, task='segment'):
model = YOLO(model_path)
results = model.predict(source=image_path, imgsz=640, conf=0.25, save=False, task=task)
return results[0]
# Helper: Draw masks and confidence on image
def draw_masks_and_conf(image_path, yolo_result, class_names=None):
img = cv2.imread(image_path)
overlay = img.copy()
out_img = img.copy()
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255)]
for i, box in enumerate(yolo_result.boxes):
conf = float(box.conf[0])
cls = int(box.cls[0])
color = colors[cls % len(colors)]
# Draw bbox
x1, y1, x2, y2 = map(int, box.xyxy[0])
cv2.rectangle(overlay, (x1, y1), (x2, y2), color, 2)
label = f"{class_names[cls] if class_names else 'damage'}: {conf:.2f}"
cv2.putText(overlay, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Draw mask if available
if hasattr(yolo_result, 'masks') and yolo_result.masks is not None:
mask = yolo_result.masks.data[i].cpu().numpy()
mask = (mask * 255).astype(np.uint8)
mask = cv2.resize(mask, (x2-x1, y2-y1))
roi = overlay[y1:y2, x1:x2]
colored_mask = np.zeros_like(roi)
colored_mask[mask > 127] = color
overlay[y1:y2, x1:x2] = cv2.addWeighted(roi, 0.5, colored_mask, 0.5, 0)
out_img = cv2.addWeighted(overlay, 0.7, img, 0.3, 0)
return out_img
# Helper: Generate JSON output
def generate_json_output(filename, damage_result, parts_result):
# Damage severity: use max confidence
if damage_result is not None and hasattr(damage_result, 'boxes'):
severity_score = float(max([float(box.conf[0]) for box in damage_result.boxes], default=0))
damage_regions = []
for box in damage_result.boxes:
x1, y1, x2, y2 = map(float, box.xyxy[0])
conf = float(box.conf[0])
damage_regions.append({"bbox": [x1, y1, x2, y2], "confidence": conf})
else:
severity_score = 0
damage_regions = []
# Parts
parts = []
for i, box in enumerate(parts_result.boxes):
x1, y1, x2, y2 = map(float, box.xyxy[0])
conf = float(box.conf[0])
cls = int(box.cls[0])
# Damage %: use mask area / bbox area if available
damage_percentage = None
if hasattr(parts_result, 'masks') and parts_result.masks is not None:
mask = parts_result.masks.data[i].cpu().numpy()
mask_area = np.sum(mask > 0.5)
bbox_area = (x2-x1)*(y2-y1)
damage_percentage = float(mask_area / bbox_area) if bbox_area > 0 else None
parts.append({
"part": PARTS_CLASS_NAMES[cls] if cls < len(PARTS_CLASS_NAMES) else str(cls),
"damaged": True,
"confidence": conf,
"damage_percentage": damage_percentage,
"bbox": [x1, y1, x2, y2]
})
# Optionally, add base64 masks
# (not implemented here for brevity)
return {
"filename": filename,
"damage": {
"severity_score": severity_score,
"regions": damage_regions
},
"parts": parts,
"cost_estimate": None
}
# Dummy login credentials
def check_login(username: str, password: str) -> bool:
return username == "demo" and password == "demo123"
@router.get("/", response_class=HTMLResponse)
def home(request: Request):
return templates.TemplateResponse("index.html", {"request": request, "result": None})
@router.post("/login", response_class=HTMLResponse)
def login(request: Request, username: str = Form(...), password: str = Form(...)):
if check_login(username, password):
return templates.TemplateResponse("index.html", {"request": request, "result": None, "user": username})
return templates.TemplateResponse("login.html", {"request": request, "error": "Invalid credentials"})
@router.get("/login", response_class=HTMLResponse)
def login_page(request: Request):
return templates.TemplateResponse("login.html", {"request": request})
@router.post("/upload", response_class=HTMLResponse)
async def upload_image(request: Request, file: UploadFile = File(...)):
try:
ext = file.filename.split(".")[-1].lower()
print(f"[DEBUG] Uploaded file extension: {ext}")
if ext not in ALLOWED_EXTENSIONS:
print(f"[DEBUG] Unsupported file type: {ext}")
return templates.TemplateResponse("index.html", {"request": request, "error": "Unsupported file type."})
# Save uploaded file
session_id = str(uuid.uuid4())
upload_filename = f"{session_id}_{file.filename}"
upload_path = os.path.join(UPLOAD_DIR, upload_filename)
print(f"[DEBUG] Saving uploaded file to: {upload_path}")
with open(upload_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
print(f"[DEBUG] File saved. Running inference...")
warning = None
try:
damage_result = None # Not used
parts_result = run_yolo_inference(PARTS_MODEL_PATH, upload_path)
print(f"[DEBUG] YOLO inference result: {parts_result}")
parts_img = None
json_output = None
parts_img_url = None
json_url = None
if hasattr(parts_result, 'boxes') and len(parts_result.boxes) > 0:
print(f"[DEBUG] Detected {len(parts_result.boxes)} parts.")
parts_img = draw_masks_and_conf(upload_path, parts_result, class_names=PARTS_CLASS_NAMES)
parts_img_filename = f"{session_id}_parts.png"
parts_img_path = os.path.join(RESULTS_DIR, parts_img_filename)
cv2.imwrite(parts_img_path, parts_img)
print(f"[DEBUG] Parts image saved to: {parts_img_path}")
parts_img_url = f"/download/result/{parts_img_filename}"
json_output = generate_json_output(file.filename, damage_result, parts_result)
json_filename = f"{session_id}_result.json"
json_path = os.path.join(RESULTS_DIR, json_filename)
with open(json_path, "w") as jf:
json.dump(json_output, jf, indent=2)
print(f"[DEBUG] JSON output saved to: {json_path}")
json_url = f"/download/result/{json_filename}"
else:
warning = "No parts detected in the image."
print("[DEBUG] No parts detected.")
llm_analysis = groq_analyzer.analyze_damage(upload_path)
print(f"[DEBUG] LLM analysis output: {llm_analysis}")
result = {
"filename": file.filename,
"parts_image": parts_img_url,
"json": json_output,
"json_download": json_url,
"llm_analysis": llm_analysis,
"warning": warning
}
print("[DEBUG] Result dict:", result)
except Exception as e:
result = {
"filename": file.filename,
"error": f"Inference failed: {str(e)}",
"parts_image": None,
"json": None,
"json_download": None,
"llm_analysis": None,
"warning": None
}
print("[ERROR] Inference failed:", e)
import threading
import time
def delayed_cleanup():
time.sleep(300) # 5 minutes
try:
os.remove(upload_path)
print(f"[DEBUG] Cleaned up upload: {upload_path}")
except Exception as ce:
print(f"[DEBUG] Cleanup error (upload): {ce}")
for suffix in ["_parts.png", "_result.json"]:
try:
os.remove(os.path.join(RESULTS_DIR, f"{session_id}{suffix}"))
print(f"[DEBUG] Cleaned up result: {os.path.join(RESULTS_DIR, f'{session_id}{suffix}')}" )
except Exception as ce:
print(f"[DEBUG] Cleanup error (result): {ce}")
threading.Thread(target=delayed_cleanup, daemon=True).start()
return templates.TemplateResponse(
"index.html",
{
"request": request,
"result": result,
"original_image": f"/download/upload/{upload_filename}"
}
)
except Exception as e:
print(f"[ERROR] Inference failed: {str(e)}")
return templates.TemplateResponse(
"index.html",
{"request": request, "error": f"Error processing image: {str(e)}"}
)
# --- Serve files from /tmp/uploads and /tmp/results ---
@router.get("/download/upload/{filename}")
def download_uploaded_file(filename: str):
file_path = os.path.join(UPLOAD_DIR, filename)
if not os.path.exists(file_path):
return JSONResponse(status_code=404, content={"error": "File not found"})
return FileResponse(file_path, filename=filename)
@router.get("/download/result/{filename}")
def download_result_file(filename: str):
file_path = os.path.join(RESULTS_DIR, filename)
if not os.path.exists(file_path):
return JSONResponse(status_code=404, content={"error": "File not found"})
return FileResponse(file_path, filename=filename)
|