File size: 10,691 Bytes
98bf2c9
534b16a
 
 
 
 
 
 
 
 
 
 
 
 
98bf2c9
534b16a
 
 
 
 
 
 
 
936b2ba
 
534b16a
 
 
 
 
 
 
98bf2c9
534b16a
 
 
 
 
98bf2c9
 
 
534b16a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bf2c9
 
 
 
 
 
 
 
 
 
534b16a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bf2c9
 
 
 
 
 
 
534b16a
98bf2c9
 
 
 
 
 
 
 
dec4c30
98bf2c9
534b16a
98bf2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534b16a
98bf2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dec4c30
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from fastapi import APIRouter, Request, UploadFile, File, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from starlette.background import BackgroundTask
import shutil
import os
import uuid
from pathlib import Path
from typing import Optional
import json
import base64
from ultralytics import YOLO
import cv2
import numpy as np
from ..utils.llm_client import GroqAnalyzer


# Templates directory
TEMPLATES_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "templates")
templates = Jinja2Templates(directory=TEMPLATES_DIR)

router = APIRouter()

UPLOAD_DIR = os.path.join("/tmp", "uploads")
RESULTS_DIR = os.path.join("/tmp", "results")

os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)

ALLOWED_EXTENSIONS = {"jpg", "jpeg", "png", "tiff", "tif"}

# Model paths
# DAMAGE_MODEL_PATH = os.path.join("/tmp", "models", "damage", "weights", "weights", "best.pt")  # Commented for now
PARTS_MODEL_PATH = os.path.join("/tmp", "models", "parts", "weights", "weights", "best.pt")

# Class names for parts
PARTS_CLASS_NAMES = ['headlamp', 'front_bumper', 'hood', 'door', 'rear_bumper']

# Initialize GroqAnalyzer
groq_analyzer = GroqAnalyzer()

# Helper: Run YOLO inference and return results
def run_yolo_inference(model_path, image_path, task='segment'):
    model = YOLO(model_path)
    results = model.predict(source=image_path, imgsz=640, conf=0.25, save=False, task=task)
    return results[0]

# Helper: Draw masks and confidence on image
def draw_masks_and_conf(image_path, yolo_result, class_names=None):
    img = cv2.imread(image_path)
    overlay = img.copy()
    out_img = img.copy()
    colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255)]
    for i, box in enumerate(yolo_result.boxes):
        conf = float(box.conf[0])
        cls = int(box.cls[0])
        color = colors[cls % len(colors)]
        # Draw bbox
        x1, y1, x2, y2 = map(int, box.xyxy[0])
        cv2.rectangle(overlay, (x1, y1), (x2, y2), color, 2)
        label = f"{class_names[cls] if class_names else 'damage'}: {conf:.2f}"
        cv2.putText(overlay, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
        # Draw mask if available
        if hasattr(yolo_result, 'masks') and yolo_result.masks is not None:
            mask = yolo_result.masks.data[i].cpu().numpy()
            mask = (mask * 255).astype(np.uint8)
            mask = cv2.resize(mask, (x2-x1, y2-y1))
            roi = overlay[y1:y2, x1:x2]
            colored_mask = np.zeros_like(roi)
            colored_mask[mask > 127] = color
            overlay[y1:y2, x1:x2] = cv2.addWeighted(roi, 0.5, colored_mask, 0.5, 0)
    out_img = cv2.addWeighted(overlay, 0.7, img, 0.3, 0)
    return out_img

# Helper: Generate JSON output
def generate_json_output(filename, damage_result, parts_result):
    # Damage severity: use max confidence
    if damage_result is not None and hasattr(damage_result, 'boxes'):
        severity_score = float(max([float(box.conf[0]) for box in damage_result.boxes], default=0))
        damage_regions = []
        for box in damage_result.boxes:
            x1, y1, x2, y2 = map(float, box.xyxy[0])
            conf = float(box.conf[0])
            damage_regions.append({"bbox": [x1, y1, x2, y2], "confidence": conf})
    else:
        severity_score = 0
        damage_regions = []
    # Parts
    parts = []
    for i, box in enumerate(parts_result.boxes):
        x1, y1, x2, y2 = map(float, box.xyxy[0])
        conf = float(box.conf[0])
        cls = int(box.cls[0])
        # Damage %: use mask area / bbox area if available
        damage_percentage = None
        if hasattr(parts_result, 'masks') and parts_result.masks is not None:
            mask = parts_result.masks.data[i].cpu().numpy()
            mask_area = np.sum(mask > 0.5)
            bbox_area = (x2-x1)*(y2-y1)
            damage_percentage = float(mask_area / bbox_area) if bbox_area > 0 else None
        parts.append({
            "part": PARTS_CLASS_NAMES[cls] if cls < len(PARTS_CLASS_NAMES) else str(cls),
            "damaged": True,
            "confidence": conf,
            "damage_percentage": damage_percentage,
            "bbox": [x1, y1, x2, y2]
        })
    # Optionally, add base64 masks
    # (not implemented here for brevity)
    return {
        "filename": filename,
        "damage": {
            "severity_score": severity_score,
            "regions": damage_regions
        },
        "parts": parts,
        "cost_estimate": None
    }

# Dummy login credentials
def check_login(username: str, password: str) -> bool:
    return username == "demo" and password == "demo123"

@router.get("/", response_class=HTMLResponse)
def home(request: Request):
    return templates.TemplateResponse("index.html", {"request": request, "result": None})

@router.post("/login", response_class=HTMLResponse)
def login(request: Request, username: str = Form(...), password: str = Form(...)):
    if check_login(username, password):
        return templates.TemplateResponse("index.html", {"request": request, "result": None, "user": username})
    return templates.TemplateResponse("login.html", {"request": request, "error": "Invalid credentials"})

@router.get("/login", response_class=HTMLResponse)
def login_page(request: Request):
    return templates.TemplateResponse("login.html", {"request": request})

@router.post("/upload", response_class=HTMLResponse)
async def upload_image(request: Request, file: UploadFile = File(...)):
    try:
        ext = file.filename.split(".")[-1].lower()
        print(f"[DEBUG] Uploaded file extension: {ext}")
        if ext not in ALLOWED_EXTENSIONS:
            print(f"[DEBUG] Unsupported file type: {ext}")
            return templates.TemplateResponse("index.html", {"request": request, "error": "Unsupported file type."})

        # Save uploaded file
        session_id = str(uuid.uuid4())
        upload_filename = f"{session_id}_{file.filename}"
        upload_path = os.path.join(UPLOAD_DIR, upload_filename)
        print(f"[DEBUG] Saving uploaded file to: {upload_path}")
        with open(upload_path, "wb") as buffer:
            shutil.copyfileobj(file.file, buffer)
        print(f"[DEBUG] File saved. Running inference...")

        warning = None
        try:
            damage_result = None  # Not used
            parts_result = run_yolo_inference(PARTS_MODEL_PATH, upload_path)
            print(f"[DEBUG] YOLO inference result: {parts_result}")

            parts_img = None
            json_output = None
            parts_img_url = None
            json_url = None

            if hasattr(parts_result, 'boxes') and len(parts_result.boxes) > 0:
                print(f"[DEBUG] Detected {len(parts_result.boxes)} parts.")
                parts_img = draw_masks_and_conf(upload_path, parts_result, class_names=PARTS_CLASS_NAMES)
                parts_img_filename = f"{session_id}_parts.png"
                parts_img_path = os.path.join(RESULTS_DIR, parts_img_filename)
                cv2.imwrite(parts_img_path, parts_img)
                print(f"[DEBUG] Parts image saved to: {parts_img_path}")
                parts_img_url = f"/download/result/{parts_img_filename}"

                json_output = generate_json_output(file.filename, damage_result, parts_result)
                json_filename = f"{session_id}_result.json"
                json_path = os.path.join(RESULTS_DIR, json_filename)
                with open(json_path, "w") as jf:
                    json.dump(json_output, jf, indent=2)
                print(f"[DEBUG] JSON output saved to: {json_path}")
                json_url = f"/download/result/{json_filename}"
            else:
                warning = "No parts detected in the image."
                print("[DEBUG] No parts detected.")

            llm_analysis = groq_analyzer.analyze_damage(upload_path)
            print(f"[DEBUG] LLM analysis output: {llm_analysis}")

            result = {
                "filename": file.filename,
                "parts_image": parts_img_url,
                "json": json_output,
                "json_download": json_url,
                "llm_analysis": llm_analysis,
                "warning": warning
            }
            print("[DEBUG] Result dict:", result)
        except Exception as e:
            result = {
                "filename": file.filename,
                "error": f"Inference failed: {str(e)}",
                "parts_image": None,
                "json": None,
                "json_download": None,
                "llm_analysis": None,
                "warning": None
            }
            print("[ERROR] Inference failed:", e)

        import threading
        import time
        def delayed_cleanup():
            time.sleep(300)  # 5 minutes
            try:
                os.remove(upload_path)
                print(f"[DEBUG] Cleaned up upload: {upload_path}")
            except Exception as ce:
                print(f"[DEBUG] Cleanup error (upload): {ce}")
            for suffix in ["_parts.png", "_result.json"]:
                try:
                    os.remove(os.path.join(RESULTS_DIR, f"{session_id}{suffix}"))
                    print(f"[DEBUG] Cleaned up result: {os.path.join(RESULTS_DIR, f'{session_id}{suffix}')}" )
                except Exception as ce:
                    print(f"[DEBUG] Cleanup error (result): {ce}")

        threading.Thread(target=delayed_cleanup, daemon=True).start()

        return templates.TemplateResponse(
            "index.html",
            {
                "request": request,
                "result": result,
                "original_image": f"/download/upload/{upload_filename}"
            }
        )
    except Exception as e:
        print(f"[ERROR] Inference failed: {str(e)}")
        return templates.TemplateResponse(
            "index.html",
            {"request": request, "error": f"Error processing image: {str(e)}"}
        )

# --- Serve files from /tmp/uploads and /tmp/results ---
@router.get("/download/upload/{filename}")
def download_uploaded_file(filename: str):
    file_path = os.path.join(UPLOAD_DIR, filename)
    if not os.path.exists(file_path):
        return JSONResponse(status_code=404, content={"error": "File not found"})
    return FileResponse(file_path, filename=filename)

@router.get("/download/result/{filename}")
def download_result_file(filename: str):
    file_path = os.path.join(RESULTS_DIR, filename)
    if not os.path.exists(file_path):
        return JSONResponse(status_code=404, content={"error": "File not found"})
    return FileResponse(file_path, filename=filename)