File size: 8,746 Bytes
c7330d5 19de296 c7330d5 c67983b 3f98e79 dd52ef3 a22a995 dd52ef3 df3c320 dd52ef3 a22a995 df3c320 a22a995 df3c320 c67983b dd52ef3 a22a995 df3c320 a22a995 df3c320 a22a995 df3c320 a22a995 df3c320 a22a995 df3c320 c67983b dd52ef3 c67983b df3c320 c67983b dd52ef3 c67983b 8aeac38 dd52ef3 c67983b dd52ef3 3f98e79 7e3e643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#modules/semantic/semantic_interface.py
# Importaciones necesarias
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .semantic_process import (
process_semantic_input,
format_semantic_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions
#modules/semantic/semantic_interface.py
# [Mantener las importaciones igual...]
def display_semantic_interface(lang_code, nlp_models, semantic_t):
"""
Interfaz para el análisis semántico
Args:
lang_code: Código del idioma actual
nlp_models: Modelos de spaCy cargados
semantic_t: Diccionario de traducciones semánticas
"""
try:
# Inicializar estados
if 'semantic_analysis_counter' not in st.session_state:
st.session_state.semantic_analysis_counter = 0
if 'semantic_current_file' not in st.session_state:
st.session_state.semantic_current_file = None
if 'semantic_page' not in st.session_state:
st.session_state.semantic_page = 'semantic'
# Contenedor fijo para todos los controles
with st.container():
st.markdown("### Controls")
# File uploader
uploaded_file = st.file_uploader(
semantic_t.get('file_uploader', 'Upload a text file for analysis'),
type=['txt'],
key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}",
on_change=lambda: setattr(st.session_state, 'semantic_current_file', uploaded_file)
)
# Contenedor para botones alineados a la izquierda
left_col, mid_col, right_col = st.columns([1,4,1])
with left_col:
# Botón de análisis
analyze_button = st.button(
semantic_t.get('analyze_button', 'Analyze text'),
key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}",
disabled=not uploaded_file,
use_container_width=True
)
# Botón de exportación (si hay resultados)
if 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
st.markdown("") # Espaciador
export_button = st.button(
semantic_t.get('export_button', 'Export Analysis'),
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
use_container_width=True
)
if export_button:
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=export_user_interactions(st.session_state.username, 'semantic'),
file_name="semantic_analysis.pdf",
mime="application/pdf",
key=f"semantic_download_{st.session_state.semantic_analysis_counter}",
use_container_width=True
)
st.markdown("---") # Separador
# Procesar el análisis cuando se presiona el botón
if analyze_button and uploaded_file is not None:
try:
with st.spinner(semantic_t.get('processing', 'Processing...')):
text_content = uploaded_file.getvalue().decode('utf-8')
analysis_result = process_semantic_input(
text_content,
lang_code,
nlp_models,
semantic_t
)
if analysis_result['success']:
st.session_state.semantic_result = analysis_result
st.session_state.semantic_analysis_counter += 1
# Guardar en la base de datos
if store_student_semantic_result(
st.session_state.username,
text_content,
analysis_result['analysis']
):
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
# Asegurar que nos mantenemos en la página semántica
st.session_state.page = 'semantic'
# Mostrar resultados
display_semantic_results(
analysis_result,
lang_code,
semantic_t
)
else:
st.error(semantic_t.get('error_message', 'Error saving analysis'))
else:
st.error(analysis_result['message'])
except Exception as e:
logger.error(f"Error en análisis semántico: {str(e)}")
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
# Mostrar resultados previos
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
display_semantic_results(
st.session_state.semantic_result,
lang_code,
semantic_t
)
else:
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))
except Exception as e:
logger.error(f"Error general en interfaz semántica: {str(e)}")
st.error("Se produjo un error. Por favor, intente de nuevo.")
# [Resto del código igual...]
def display_semantic_results(result, lang_code, semantic_t):
"""
Muestra los resultados del análisis semántico en tabs
"""
if result is None or not result['success']:
st.warning(semantic_t.get('no_results', 'No results available'))
return
analysis = result['analysis']
# Crear tabs para los resultados
tab1, tab2 = st.tabs([
semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
semantic_t.get('entities_tab', 'Entities Analysis')
])
# Tab 1: Conceptos Clave
with tab1:
col1, col2 = st.columns(2)
# Columna 1: Lista de conceptos
with col1:
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
concept_text = "\n".join([
f"• {concept} ({frequency:.2f})"
for concept, frequency in analysis['key_concepts']
])
st.markdown(concept_text)
# Columna 2: Gráfico de conceptos
with col2:
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
st.image(analysis['concept_graph'])
# Tab 2: Entidades
with tab2:
col1, col2 = st.columns(2)
# Columna 1: Lista de entidades
with col1:
st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
if 'entities' in analysis:
for entity_type, entities in analysis['entities'].items():
st.markdown(f"**{entity_type}**")
st.markdown("• " + "\n• ".join(entities))
# Columna 2: Gráfico de entidades
with col2:
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
st.image(analysis['entity_graph'])
# Botón de exportación al final
col1, col2, col3 = st.columns([2,1,2])
with col2:
if st.button(
semantic_t.get('export_button', 'Export Analysis'),
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
use_container_width=True
):
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="semantic_analysis.pdf",
mime="application/pdf",
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
) |