File size: 19,024 Bytes
21661b7 cf5b64f 21661b7 988c451 4fe3aeb a90c0ad bffd3e5 a90c0ad 988c451 21661b7 a90c0ad 21661b7 34ce6da 5142737 c0d0a84 5142737 c0d0a84 1396937 c0d0a84 488899f 21661b7 c0d0a84 488899f c0d0a84 488899f c0d0a84 488899f cf5b64f 488899f 21661b7 c0d0a84 cf5b64f c0d0a84 488899f c0d0a84 cf5b64f c0d0a84 cf5b64f c0d0a84 cf5b64f a90c0ad 488899f 988c451 dfee16e 21661b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#modules/morphosyntax/morphosyntax_interface.py
import streamlit as st
import spacy_streamlit
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import base64
# Importar desde morphosyntax_process.py
from .morphosyntax_process import (
process_morphosyntactic_input,
format_analysis_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
from ..database.chat_db import store_chat_history
from ..database.morphosintaxis_export import export_user_interactions
import logging
logger = logging.getLogger(__name__)
def display_morphosyntax_interface(lang_code, nlp_models, t):
"""
Interfaz para el análisis morfosintáctico
Args:
lang_code: Código del idioma actual
nlp_models: Modelos de spaCy cargados
t: Diccionario de traducciones
"""
# Obtener el diccionario de traducciones morfosintácticas
morpho_t = t.get('MORPHOSYNTACTIC', {})
# Inicializar el estado de la entrada
input_key = f"morphosyntax_input_{lang_code}"
if input_key not in st.session_state:
st.session_state[input_key] = ""
# Campo de entrada de texto
sentence_input = st.text_area(
morpho_t.get('morpho_input_label', 'Enter text to analyze'),
height=150,
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'),
value=st.session_state[input_key],
key=f"text_area_{lang_code}",
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"])
)
# Botón de análisis
if st.button(morpho_t.get('analyze_button', 'Analyze text'), key=f"analyze_button_{lang_code}"):
current_input = st.session_state[input_key]
if current_input:
try:
# Procesar el texto
doc = nlp_models[lang_code](current_input)
# Realizar análisis morfosintáctico
advanced_analysis = perform_advanced_morphosyntactic_analysis(
current_input,
nlp_models[lang_code]
)
# Guardar resultado en el estado de la sesión
st.session_state.morphosyntax_result = {
'doc': doc,
'advanced_analysis': advanced_analysis
}
# Mostrar resultados
display_morphosyntax_results(
st.session_state.morphosyntax_result,
lang_code,
morpho_t # Pasar morpho_t en lugar de t
)
# Guardar en la base de datos
if store_morphosyntax_result(
st.session_state.username,
current_input,
get_repeated_words_colors(doc),
advanced_analysis['arc_diagram'],
advanced_analysis['pos_analysis'],
advanced_analysis['morphological_analysis'],
advanced_analysis['sentence_structure']
):
st.success(morpho_t.get('success_message', 'Analysis saved successfully'))
else:
st.error(morpho_t.get('error_message', 'Error saving analysis'))
except Exception as e:
st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}'))
else:
st.warning(morpho_t.get('warning_message', 'Please enter a text to analyze'))
# Mostrar resultados previos si existen
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None:
display_morphosyntax_results(
st.session_state.morphosyntax_result,
lang_code,
morpho_t # Pasar morpho_t en lugar de t
)
else:
st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis'))
def display_morphosyntax_results(result, lang_code, t):
if result is None:
st.warning(t['no_results']) # Añade esta traducción a tu diccionario
return
doc = result['doc']
advanced_analysis = result['advanced_analysis']
# Mostrar leyenda (código existente)
st.markdown(f"##### {t['legend']}")
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS[lang_code]:
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
legend_html += "</div>"
st.markdown(legend_html, unsafe_allow_html=True)
# Mostrar análisis de palabras repetidas (código existente)
word_colors = get_repeated_words_colors(doc)
with st.expander(t['repeated_words'], expanded=True):
highlighted_text = highlight_repeated_words(doc, word_colors)
st.markdown(highlighted_text, unsafe_allow_html=True)
# Mostrar estructura de oraciones
with st.expander(t['sentence_structure'], expanded=True):
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
sentence_str = (
f"**{t['sentence']} {i+1}** "
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- "
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- "
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}"
)
st.markdown(sentence_str)
# Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico
col1, col2 = st.columns(2)
with col1:
with st.expander(t['pos_analysis'], expanded=True):
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
# Traducir las etiquetas POS a sus nombres en el idioma seleccionado
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Renombrar las columnas para mayor claridad
pos_df = pos_df.rename(columns={
'pos': t['grammatical_category'],
'count': t['count'],
'percentage': t['percentage'],
'examples': t['examples']
})
# Mostrar el dataframe
st.dataframe(pos_df)
with col2:
with st.expander(t['morphological_analysis'], expanded=True):
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
# Definir el mapeo de columnas
column_mapping = {
'text': t['word'],
'lemma': t['lemma'],
'pos': t['grammatical_category'],
'dep': t['dependency'],
'morph': t['morphology']
}
# Renombrar las columnas existentes
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
# Traducir las categorías gramaticales
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Traducir las dependencias
dep_translations = {
'es': {
'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto',
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto',
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado',
'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso',
'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal',
'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva',
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador',
'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo',
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis',
'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación'
},
'en': {
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object',
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement',
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier',
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker',
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun',
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking',
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression',
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan',
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation'
},
'fr': {
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect',
'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique',
'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial',
'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal',
'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant',
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée',
'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin',
'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation'
}
}
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x))
# Traducir la morfología
def translate_morph(morph_string, lang_code):
morph_translations = {
'es': {
'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido',
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo',
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz',
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural',
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo',
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado',
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto'
},
'en': {
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person',
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice',
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative',
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle',
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect'
},
'fr': {
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom',
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix',
'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif',
'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe',
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
}
}
for key, value in morph_translations[lang_code].items():
morph_string = morph_string.replace(key, value)
return morph_string
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
# Seleccionar y ordenar las columnas a mostrar
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']]
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
# Mostrar el DataFrame
st.dataframe(morph_df[columns_to_display])
# Mostrar diagramas de arco (código existente)
with st.expander(t['arc_diagram'], expanded=True):
sentences = list(doc.sents)
arc_diagrams = []
for i, sent in enumerate(sentences):
st.subheader(f"{t['sentence']} {i+1}")
html = displacy.render(sent, style="dep", options={"distance": 100})
html = html.replace('height="375"', 'height="200"')
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
st.write(html, unsafe_allow_html=True)
arc_diagrams.append(html)
# Botón de exportación
if st.button(morpho_t.get('export_button', 'Export Analysis')):
pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax')
st.download_button(
label=morpho_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="morphosyntax_analysis.pdf",
mime="application/pdf"
)
'''
if user_input:
# Añadir el mensaje del usuario al historial
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input})
# Procesar el input del usuario nuevo al 26-9-2024
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
# Mostrar indicador de carga
with st.spinner(t.get('processing', 'Processing...')):
try:
# Procesar el input del usuario
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
# Añadir la respuesta al historial
message = {
"role": "assistant",
"content": response
}
if visualizations:
message["visualizations"] = visualizations
st.session_state.morphosyntax_chat_history.append(message)
# Mostrar la respuesta más reciente
with st.chat_message("assistant"):
st.write(response)
if visualizations:
for i, viz in enumerate(visualizations):
st.markdown(f"**Oración {i+1} del párrafo analizado**")
st.components.v1.html(
f"""
<div style="width: 100%; overflow-x: auto; white-space: nowrap;">
<div style="min-width: 1200px;">
{viz}
</div>
</div>
""",
height=350,
scrolling=True
)
if i < len(visualizations) - 1:
st.markdown("---") # Separador entre diagramas
# Si es un análisis, guardarlo en la base de datos
if user_input.startswith('/analisis_morfosintactico') and result:
store_morphosyntax_result(
st.session_state.username,
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado
result.get('repeated_words', {}),
visualizations,
result.get('pos_analysis', []),
result.get('morphological_analysis', []),
result.get('sentence_structure', [])
)
except Exception as e:
st.error(f"{t['error_processing']}: {str(e)}")
# Forzar la actualización de la interfaz
st.rerun()
# Botón para limpiar el historial del chat
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')):
st.session_state.morphosyntax_chat_history = []
st.rerun()
'''
'''
############ MODULO PARA DEPURACIÓN Y PRUEBAS #####################################################
def display_morphosyntax_interface(lang_code, nlp_models, t):
st.subheader(t['morpho_title'])
text_input = st.text_area(
t['warning_message'],
height=150,
key=generate_unique_key("morphosyntax", "text_area")
)
if st.button(
t['results_title'],
key=generate_unique_key("morphosyntax", "analyze_button")
):
if text_input:
# Aquí iría tu lógica de análisis morfosintáctico
# Por ahora, solo mostraremos un mensaje de placeholder
st.info(t['analysis_placeholder'])
else:
st.warning(t['no_text_warning'])
###
#################################################
'''
|