File size: 2,750 Bytes
3b70165 8b38f52 813a290 8b38f52 3b70165 ff864f2 6bfe703 8e75705 f89a64b 3b70165 8b38f52 ff864f2 8b38f52 813a290 3b70165 9173494 aa91d57 1e863b9 3b70165 88aea46 1e863b9 c4c5749 88aea46 1e863b9 8b38f52 ff864f2 9173494 ff864f2 f89a64b ff864f2 8b38f52 ff864f2 8b38f52 ff864f2 8b38f52 4cf9d21 8b38f52 f89a64b 813a290 8b38f52 c5c97b1 ff864f2 c5c97b1 ff864f2 c5c97b1 813a290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# app.py
import streamlit as st
from modules.database import initialize_mongodb_connection
from modules.auth import authenticate_user, get_user_role, register_user
from modules.ui import (
login_register_page,
display_morphosyntax_analysis_interface,
display_semantic_analysis_interface,
display_discourse_analysis_interface,
display_student_progress,
display_chatbot_interface
)
from modules.spacy_utils import load_spacy_models
st.set_page_config(page_title="AIdeaText", layout="wide", page_icon="random")
# Cargar los modelos de spaCy una vez al inicio de la aplicación
@st.cache_resource
def load_models():
return load_spacy_models()
nlp_models = load_models()
def logged_in_interface():
languages = {'Español': 'es', 'English': 'en', 'Français': 'fr'}
# Crear un contenedor para la barra superior
with st.container():
# Usar más columnas para un mejor control del espacio
col1, col2, col3, col4, col5 = st.columns([1, 1, 0.8, 1, 1])
with col1:
st.markdown(f"<h3 style='margin-bottom: 0;'>Bienvenido, {st.session_state.username}</h3>", unsafe_allow_html=True)
with col3:
st.markdown("<p style='font-size: 1.2rem; margin-bottom: 0; padding-top: 15px;'>Selecciona el idioma del texto que analizarás</p>", unsafe_allow_html=True)
with col4:
selected_lang = st.selectbox("", list(languages.keys()), key="language_selector", label_visibility="collapsed")
lang_code = languages[selected_lang]
with col5:
if st.button("Cerrar Sesión", key="logout_button"):
st.session_state.logged_in = False
st.experimental_rerun()
# Añadir una línea divisoria
st.markdown("---")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Análisis morfosintáctico", "Análisis semántico", "Análisis del discurso", "Chat con Llama2", "Mi Progreso"])
with tab1:
display_morphosyntax_analysis_interface(nlp_models, lang_code)
with tab2:
display_semantic_analysis_interface(nlp_models, lang_code)
with tab3:
display_discourse_analysis_interface(nlp_models, lang_code)
with tab4:
display_chatbot_interface(lang_code)
with tab5:
display_student_progress(st.session_state.username, lang_code)
def main():
if not initialize_mongodb_connection():
st.warning("La conexión a la base de datos MongoDB no está disponible. Algunas funciones pueden no estar operativas.")
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if not st.session_state.logged_in:
login_register_page()
else:
logged_in_interface()
if __name__ == "__main__":
main() |