Spaces:
Runtime error
Runtime error
File size: 12,249 Bytes
4ecdaad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# coding=utf-8
# Copyright 2023 The AIWaves Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""standard operation procedure of an LLM Autonomous agent"""
import random
from LLM.base_LLM import *
from State import State
from utils import extract, get_relevant_history
from Memory import Memory
from Prompt import *
import json
import os
class SOP:
"""
Responsible for managing the operational processes of all agents
"""
# SOP should have args : "states" "relations" "root"
def __init__(self, **kwargs):
self.controller_dict = {}
self.LLM = init_LLM("logs"+os.sep+"god",**kwargs)
self.states = {}
self.init_states(kwargs["states"])
self.init_relation(kwargs["relations"])
for state_name, states_dict in kwargs["states"].items():
if state_name != "end_state" and "controller" in states_dict:
self.controller_dict[state_name] = states_dict["controller"]
self.user_names = kwargs["user_names"] if "user_names" in kwargs else []
self.root = self.states[kwargs["root"]]
self.current_state = self.root
self.finish_state_name = (
kwargs["finish_state_name"]
if "finish_state_name" in kwargs
else "end_state"
)
self.roles_to_names = None
self.names_to_roles = None
self.finished = False
@classmethod
def from_config(cls, config_path):
with open(config_path) as f:
config = json.load(f)
os.environ.clear()
for key,value in config["config"].items():
if value!="":
os.environ[key] = value
sop = SOP(**config)
return sop
def init_states(self, states_dict):
for state_name, state_dict in states_dict.items():
state_dict["name"] = state_name
self.states[state_name] = State(**state_dict)
def init_relation(self, relations):
for state_name, state_relation in relations.items():
for idx, next_state_name in state_relation.items():
self.states[state_name].next_states[idx] = self.states[next_state_name]
def transit(self, chat_history, **kwargs):
"""
Determine the next state based on the current situation
Return :
next_state(State) : the next state
"""
# 如果是单一循环节点,则一直循环即可
# If it is a single loop node, just keep looping
if len(self.current_state.next_states) == 1:
next_state = "0"
# 否则则需要controller去判断进入哪一节点
# Otherwise, the controller needs to determine which node to enter.
else:
current_state = self.current_state
controller_dict = self.controller_dict[current_state.name]
relevant_history = kwargs["relevant_history"]
max_chat_nums = controller_dict["max_chat_nums"] if "max_chat_nums" in controller_dict else 1000
if current_state.chat_nums>=max_chat_nums:
return self.current_state.next_states["1"]
# 否则则让controller判断是否结束
# Otherwise, let the controller judge whether to end
judge_system_prompt = controller_dict["judge_system_prompt"] if "judge_system_prompt" in controller_dict else ""
environment_prompt = eval(Get_environment_prompt) if current_state.environment_prompt else ""
transit_system_prompt = eval(Transit_system_prompt)
judge_last_prompt = controller_dict["judge_last_prompt"] if "judge_last_prompt" in controller_dict else ""
transit_last_prompt = eval(Transit_last_prompt)
environment = kwargs["environment"]
environment_summary = environment.shared_memory["short_term_memory"]
chat_history_message = Memory.get_chat_history(chat_history)
query = chat_history[-1].get_query()
chat_messages = [
{
"role": "user",
"content": eval(Transit_message)
}
]
extract_words = controller_dict["judge_extract_words"] if "judge_extract_words" in controller_dict else "end"
response = self.LLM.get_response(
chat_messages, transit_system_prompt, transit_last_prompt, stream=False, **kwargs
)
next_state = (
response if response.isdigit() else extract(response, extract_words)
)
# 如果没有parse出来则继续循环
# If no parse comes out, continue looping
if not next_state.isdigit():
next_state = "0"
next_state = self.current_state.next_states[next_state]
return next_state
def route(self, chat_history, **kwargs):
"""
Determine the role that needs action based on the current situation
Return :
current_agent(Agent) : the next act agent
"""
agents = kwargs["agents"]
# 知道进入哪一状态后开始分配角色,如果该状态下只有一个角色则直接分配给他
# Start assigning roles after knowing which state you have entered. If there is only one role in that state, assign it directly to him.
if len(self.current_state.roles) == 1:
next_role = self.current_state.roles[0]
# 否则controller进行分配
# Otherwise the controller determines
else:
relevant_history = kwargs["relevant_history"]
controller_type = (
self.controller_dict[self.current_state.name]["controller_type"]
if "controller_type" in self.controller_dict[self.current_state.name]
else "order"
)
# 如果是rule 控制器,则交由LLM进行分配角色
# If controller type is rule, it is left to LLM to assign roles.
if controller_type == "rule":
controller_dict = self.controller_dict[self.current_state.name]
call_last_prompt = controller_dict["call_last_prompt"] if "call_last_prompt" in controller_dict else ""
allocate_prompt = ""
roles = list(set(self.current_state.roles))
for role in roles:
allocate_prompt += eval(Allocate_component)
call_system_prompt = controller_dict["call_system_prompt"] if "call_system_prompt" in controller_dict else ""
environment_prompt = eval(Get_environment_prompt) if self.current_state.environment_prompt else ""
# call_system_prompt + environment + allocate_prompt
call_system_prompt = eval(Call_system_prompt)
query = chat_history[-1].get_query()
last_name = chat_history[-1].send_name
# last_prompt: note + last_prompt + query
call_last_prompt =eval(Call_last_prompt)
chat_history_message = Memory.get_chat_history(chat_history)
# Intermediate historical conversation records
chat_messages = [
{
"role": "user",
"content": eval(Call_message),
}
]
extract_words = controller_dict["call_extract_words"] if "call_extract_words" in controller_dict else "end"
response = self.LLM.get_response(
chat_messages, call_system_prompt, call_last_prompt, stream=False, **kwargs
)
# get next role
next_role = extract(response, extract_words)
# Speak in order
elif controller_type == "order":
# If there is no begin role, it will be given directly to the first person.
if not self.current_state.current_role:
next_role = self.current_state.roles[0]
# otherwise first
else:
self.current_state.index += 1
self.current_state.index = (self.current_state.index) % len(self.current_state.roles)
next_role = self.current_state.roles[self.current_state.index]
# random speak
elif controller_type == "random":
next_role = random.choice(self.current_state.roles)
# 如果下一角色不在,则随机挑选一个
# If the next character is not available, pick one at random
if next_role not in self.current_state.roles:
next_role = random.choice(self.current_state.roles)
self.current_state.current_role = next_role
next_agent = agents[self.roles_to_names[self.current_state.name][next_role]]
return next_agent
def next(self, environment, agents):
"""
Determine the next state and the agent that needs action based on the current situation
"""
# 如果是第一次进入该状态
# If it is the first time to enter this state
if self.current_state.is_begin:
agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
agent = agents[agent_name]
return self.current_state,agent
# get relevant history
query = environment.shared_memory["long_term_memory"][-1].content
relevant_history = get_relevant_history(
query,
environment.shared_memory["long_term_memory"][:-1],
environment.shared_memory["chat_embeddings"][:-1],
)
relevant_history = Memory.get_chat_history(relevant_history)
next_state = self.transit(
chat_history=environment.shared_memory["long_term_memory"][
environment.current_chat_history_idx :
],
relevant_history=relevant_history,
environment=environment,
)
# 如果进入终止节点,则直接终止
# If you enter the termination node, terminate directly
if next_state.name == self.finish_state_name:
self.finished = True
return None, None
self.current_state = next_state
# 如果是首次进入该节点且有开场白,则直接分配给开场角色
# If it is the first time to enter the state and there is a begin query, it will be directly assigned to the begin role.
if self.current_state.is_begin and self.current_state.begin_role:
agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
agent = agents[agent_name]
return self.current_state,agent
next_agent = self.route(
chat_history=environment.shared_memory["long_term_memory"][
environment.current_chat_history_idx :
],
agents = agents,
relevant_history=relevant_history,
)
return self.current_state, next_agent
|