File size: 12,249 Bytes
200916c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
# Copyright 2023  The AIWaves Inc. team.

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""standard operation procedure of an LLM Autonomous agent"""
import random
from LLM.base_LLM import *
from State import State
from utils import extract, get_relevant_history
from Memory import Memory
from Prompt import *
import json
import os

class SOP:
    """

    Responsible for managing the operational processes of all agents

    """

    # SOP should have args : "states" "relations" "root"

    def __init__(self, **kwargs):
        self.controller_dict = {}
        self.LLM = init_LLM("logs"+os.sep+"god",**kwargs)

        self.states = {}
        self.init_states(kwargs["states"])
        self.init_relation(kwargs["relations"])
        for state_name, states_dict in kwargs["states"].items():
            if state_name != "end_state" and "controller" in states_dict:
                self.controller_dict[state_name] = states_dict["controller"]

        self.user_names = kwargs["user_names"] if "user_names" in kwargs else []
        self.root = self.states[kwargs["root"]]
        self.current_state = self.root
        self.finish_state_name = (
            kwargs["finish_state_name"]
            if "finish_state_name" in kwargs
            else "end_state"
        )
        self.roles_to_names = None
        self.names_to_roles = None
        self.finished = False

    @classmethod
    def from_config(cls, config_path):
        with open(config_path) as f:
            config = json.load(f)
        os.environ.clear()
        for key,value in config["config"].items():
            if value!="":
                os.environ[key] = value
        sop = SOP(**config)
        return sop

    def init_states(self, states_dict):
        for state_name, state_dict in states_dict.items():
            state_dict["name"] = state_name
            self.states[state_name] = State(**state_dict)

    def init_relation(self, relations):
        for state_name, state_relation in relations.items():
            for idx, next_state_name in state_relation.items():
                self.states[state_name].next_states[idx] = self.states[next_state_name]

    def transit(self, chat_history, **kwargs):
        """

        Determine the next state based on the current situation

        Return : 

        next_state(State) : the next state

        """
        # 如果是单一循环节点,则一直循环即可
        # If it is a single loop node, just keep looping
        if len(self.current_state.next_states) == 1:
            next_state = "0"
            
        # 否则则需要controller去判断进入哪一节点
        # Otherwise, the controller needs to determine which node to enter.   
        else:
            current_state = self.current_state
            controller_dict = self.controller_dict[current_state.name]
            relevant_history = kwargs["relevant_history"]
            
            max_chat_nums = controller_dict["max_chat_nums"] if "max_chat_nums" in controller_dict else 1000
            if current_state.chat_nums>=max_chat_nums:
                return self.current_state.next_states["1"]
            

            # 否则则让controller判断是否结束
            # Otherwise, let the controller judge whether to end
            judge_system_prompt = controller_dict["judge_system_prompt"] if "judge_system_prompt" in controller_dict else ""
            environment_prompt = eval(Get_environment_prompt) if current_state.environment_prompt else ""
            transit_system_prompt = eval(Transit_system_prompt)
            
            judge_last_prompt = controller_dict["judge_last_prompt"] if "judge_last_prompt" in controller_dict else ""
            transit_last_prompt = eval(Transit_last_prompt)
            

            
            environment = kwargs["environment"]
            environment_summary = environment.shared_memory["short_term_memory"]
            chat_history_message = Memory.get_chat_history(chat_history)
            query = chat_history[-1].get_query()
            
            chat_messages = [
                {
                    "role": "user",
                    "content": eval(Transit_message)
                }
            ]
            
            extract_words = controller_dict["judge_extract_words"] if "judge_extract_words" in controller_dict else "end"


            response = self.LLM.get_response(
                chat_messages, transit_system_prompt, transit_last_prompt, stream=False, **kwargs
            )
            next_state = (
                response if response.isdigit() else extract(response, extract_words)
            )
            
            # 如果没有parse出来则继续循环
            # If no parse comes out, continue looping
            if not next_state.isdigit():
                next_state = "0"
            
        next_state = self.current_state.next_states[next_state]
        return next_state


    def route(self, chat_history, **kwargs):
        """

        Determine the role that needs action based on the current situation

        Return : 

        current_agent(Agent) : the next act agent

        """
        
        agents = kwargs["agents"]
        
        # 知道进入哪一状态后开始分配角色,如果该状态下只有一个角色则直接分配给他
        # Start assigning roles after knowing which state you have entered. If there is only one role in that state, assign it directly to him.
        if len(self.current_state.roles) == 1:
            next_role = self.current_state.roles[0]
        
        
        
        # 否则controller进行分配
        # Otherwise the controller determines
        else:
            relevant_history = kwargs["relevant_history"]
            controller_type = (
                self.controller_dict[self.current_state.name]["controller_type"]
                if "controller_type" in self.controller_dict[self.current_state.name]
                else "order"
            )


            # 如果是rule 控制器,则交由LLM进行分配角色
            # If  controller type is rule, it is left to LLM to assign roles.
            if controller_type == "rule":
                controller_dict = self.controller_dict[self.current_state.name]
                
                call_last_prompt = controller_dict["call_last_prompt"] if "call_last_prompt" in controller_dict else ""
                
                allocate_prompt = ""
                roles = list(set(self.current_state.roles))
                for role in roles:
                    allocate_prompt += eval(Allocate_component)
                    
                call_system_prompt = controller_dict["call_system_prompt"]  if "call_system_prompt" in controller_dict else ""
                environment_prompt = eval(Get_environment_prompt) if self.current_state.environment_prompt else ""    
                # call_system_prompt + environment + allocate_prompt 
                call_system_prompt = eval(Call_system_prompt)
                
                query = chat_history[-1].get_query()
                last_name = chat_history[-1].send_name
                # last_prompt: note + last_prompt + query
                call_last_prompt =eval(Call_last_prompt)
                
                
                chat_history_message = Memory.get_chat_history(chat_history)
                # Intermediate historical conversation records
                chat_messages = [
                    {
                        "role": "user",
                        "content": eval(Call_message),
                    }
                ]

                extract_words = controller_dict["call_extract_words"] if "call_extract_words" in controller_dict else "end"

                response = self.LLM.get_response(
                    chat_messages, call_system_prompt, call_last_prompt, stream=False, **kwargs
                )

                # get next role
                next_role = extract(response, extract_words)

            # Speak in order
            elif controller_type == "order":
                # If there is no begin role, it will be given directly to the first person.
                if not self.current_state.current_role:
                    next_role = self.current_state.roles[0]
                # otherwise first
                else:
                    self.current_state.index += 1
                    self.current_state.index =  (self.current_state.index) % len(self.current_state.roles)
                    next_role = self.current_state.roles[self.current_state.index]
            # random speak
            elif controller_type == "random":
                next_role = random.choice(self.current_state.roles)
            
        # 如果下一角色不在,则随机挑选一个
        # If the next character is not available, pick one at random    
        if next_role not in self.current_state.roles:
            next_role = random.choice(self.current_state.roles)
            
        self.current_state.current_role = next_role 
        
        next_agent = agents[self.roles_to_names[self.current_state.name][next_role]]
        
        return next_agent
    
    def next(self, environment, agents):
        """

        Determine the next state and the agent that needs action based on the current situation

        """
        
        # 如果是第一次进入该状态
        # If it is the first time to enter this state
        
        if self.current_state.is_begin:
            agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
            agent = agents[agent_name]
            return self.current_state,agent
    
    
        # get relevant history
        query = environment.shared_memory["long_term_memory"][-1].content
        relevant_history = get_relevant_history(
            query,
            environment.shared_memory["long_term_memory"][:-1],
            environment.shared_memory["chat_embeddings"][:-1],
        )
        relevant_history = Memory.get_chat_history(relevant_history)
        
        
        
        next_state = self.transit(
            chat_history=environment.shared_memory["long_term_memory"][
                environment.current_chat_history_idx :
            ],
            relevant_history=relevant_history,
            environment=environment,
        )
        # 如果进入终止节点,则直接终止
        # If you enter the termination node, terminate directly
        if next_state.name == self.finish_state_name:
            self.finished = True
            return None, None

        self.current_state = next_state
        
        # 如果是首次进入该节点且有开场白,则直接分配给开场角色
        # If it is the first time to enter the state and there is a begin query, it will be directly assigned to the begin role.
        if self.current_state.is_begin and self.current_state.begin_role:
            agent_name = self.roles_to_names[self.current_state.name][self.current_state.begin_role]
            agent = agents[agent_name]
            return self.current_state,agent
           

        next_agent = self.route(
            chat_history=environment.shared_memory["long_term_memory"][
                environment.current_chat_history_idx :
            ],
            agents = agents,
            relevant_history=relevant_history,
        )

        return self.current_state, next_agent