Spaces:
Runtime error
Runtime error
File size: 16,092 Bytes
200916c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# coding=utf-8
# Copyright 2023 The AIWaves Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""helper functions for an LLM autonoumous agent"""
import csv
import random
import json
import pandas
import numpy as np
import requests
import torch
from tqdm import tqdm
import re
import datetime
import string
import random
import os
import openai
from text2vec import semantic_search
import re
import datetime
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from sentence_transformers import SentenceTransformer
embed_model_name = os.environ["Embed_Model"] if "Embed_Model" in os.environ else "text-embedding-ada-002"
if embed_model_name in ["text-embedding-ada-002"]:
pass
else:
embedding_model = SentenceTransformer(
embed_model_name, device=torch.device("cpu")
)
def get_embedding(sentence):
if embed_model_name in ["text-embedding-ada-002"]:
openai.api_key = os.environ["API_KEY"]
if "PROXY" in os.environ:
assert "http:" in os.environ["PROXY"] or "socks" in os.environ["PROXY"],"PROXY error,PROXY must be http or socks"
openai.proxy = os.environ["PROXY"]
if "API_BASE" in os.environ:
openai.api_base = os.environ["API_BASE"]
embedding_model = openai.Embedding
embed = embedding_model.create(
model=embed_model_name,
input=sentence
)
embed = embed["data"][0]["embedding"]
embed = torch.tensor(embed,dtype=torch.float32)
else:
embed = embedding_model.encode(sentence,convert_to_tensor=True)
if len(embed.shape)==1:
embed = embed.unsqueeze(0)
return embed
def get_code():
return "".join(random.sample(string.ascii_letters + string.digits, 8))
def get_content_between_a_b(start_tag, end_tag, text):
"""
Args:
start_tag (str): start_tag
end_tag (str): end_tag
text (str): complete sentence
Returns:
str: the content between start_tag and end_tag
"""
extracted_text = ""
start_index = text.find(start_tag)
while start_index != -1:
end_index = text.find(end_tag, start_index + len(start_tag))
if end_index != -1:
extracted_text += text[start_index +
len(start_tag):end_index] + " "
start_index = text.find(start_tag, end_index + len(end_tag))
else:
break
return extracted_text.strip()
def extract(text, type):
"""extract the content between <type></type>
Args:
text (str): complete sentence
type (str): tag
Returns:
str: content between <type></type>
"""
target_str = get_content_between_a_b(f"<{type}>", f"</{type}>", text)
return target_str
def count_files_in_directory(directory):
# 获取指定目录下的文件数目
file_count = len([f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))])
return file_count
def delete_oldest_files(directory, num_to_keep):
# 获取目录下文件列表,并按修改时间排序
files = [(f, os.path.getmtime(os.path.join(directory, f))) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
# 删除最开始的 num_to_keep 个文件
for i in range(min(num_to_keep, len(files))):
file_to_delete = os.path.join(directory, files[i][0])
os.remove(file_to_delete)
def delete_files_if_exceed_threshold(directory, threshold, num_to_keep):
# 获取文件数目并进行处理
file_count = count_files_in_directory(directory)
if file_count > threshold:
delete_count = file_count - num_to_keep
delete_oldest_files(directory, delete_count)
def save_logs(log_path, messages, response):
if not os.path.exists(log_path):
os.mkdir(log_path)
delete_files_if_exceed_threshold(log_path, 20, 10)
log_path = log_path if log_path else "logs"
log = {}
log["input"] = messages
log["output"] = response
os.makedirs(log_path, exist_ok=True)
log_file = os.path.join(
log_path,
datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + ".json")
with open(log_file, "w", encoding="utf-8") as f:
json.dump(log, f, ensure_ascii=False, indent=2)
def semantic_search_word2vec(query_embedding, kb_embeddings, top_k):
return semantic_search(query_embedding, kb_embeddings, top_k=top_k)
def cut_sent(para):
para = re.sub("([。!?\?])([^”’])", r"\1\n\2", para)
para = re.sub("(\.{6})([^”’])", r"\1\n\2", para)
para = re.sub("(\…{2})([^”’])", r"\1\n\2", para)
para = re.sub("([。!?\?][”’])([^,。!?\?])", r"\1\n\2", para)
para = para.rstrip()
pieces = [i for i in para.split("\n") if i]
batch_size = 3
chucks = [
" ".join(pieces[i:i + batch_size])
for i in range(0, len(pieces), batch_size)
]
return chucks
def process_document(file_path):
"""
Save QA_csv to json.
Args:
model: LLM to generate embeddings
qa_dict: A dict contains Q&A
save_path: where to save the json file.
Json format:
Dict[num,Dict[q:str,a:str,chunk:str,emb:List[float]]
"""
final_dict = {}
count = 0
if file_path.endswith(".csv"):
dataset = pandas.read_csv(file_path)
questions = dataset["question"]
answers = dataset["answer"]
# embedding q+chunk
for q, a in zip(questions, answers):
for text in cut_sent(a):
temp_dict = {}
temp_dict["q"] = q
temp_dict["a"] = a
temp_dict["chunk"] = text
temp_dict["emb"] = get_embedding(q + text).tolist()
final_dict[count] = temp_dict
count += 1
# embedding chunk
for q, a in zip(questions, answers):
for text in cut_sent(a):
temp_dict = {}
temp_dict["q"] = q
temp_dict["a"] = a
temp_dict["chunk"] = text
temp_dict["emb"] = get_embedding(text).tolist()
final_dict[count] = temp_dict
count += 1
# embedding q
for q, a in zip(questions, answers):
temp_dict = {}
temp_dict["q"] = q
temp_dict["a"] = a
temp_dict["chunk"] = a
temp_dict["emb"] = get_embedding(q).tolist()
final_dict[count] = temp_dict
count += 1
# embedding q+a
for q, a in zip(questions, answers):
temp_dict = {}
temp_dict["q"] = q
temp_dict["a"] = a
temp_dict["chunk"] = a
temp_dict["emb"] = get_embedding(q + a).tolist()
final_dict[count] = temp_dict
count += 1
# embedding a
for q, a in zip(questions, answers):
temp_dict = {}
temp_dict["q"] = q
temp_dict["a"] = a
temp_dict["chunk"] = a
temp_dict["emb"] = get_embedding(a).tolist()
final_dict[count] = temp_dict
count += 1
print(f"finish updating {len(final_dict)} data!")
os.makedirs("temp_database", exist_ok=True)
save_path = os.path.join(
"temp_database/",
file_path.split("/")[-1].replace("." + file_path.split(".")[1],
".json"),
)
print(save_path)
with open(save_path, "w") as f:
json.dump(final_dict, f, ensure_ascii=False, indent=2)
return {"knowledge_base": save_path, "type": "QA"}
else:
loader = UnstructuredFileLoader(file_path)
docs = loader.load()
text_spiltter = CharacterTextSplitter(chunk_size=200,
chunk_overlap=100)
docs = text_spiltter.split_text(docs[0].page_content)
os.makedirs("temp_database", exist_ok=True)
save_path = os.path.join(
"temp_database/",
file_path.replace("." + file_path.split(".")[1], ".json"))
final_dict = {}
count = 0
for c in tqdm(docs):
temp_dict = {}
temp_dict["chunk"] = c
temp_dict["emb"] = get_embedding(c).tolist()
final_dict[count] = temp_dict
count += 1
print(f"finish updating {len(final_dict)} data!")
with open(save_path, "w") as f:
json.dump(final_dict, f, ensure_ascii=False, indent=2)
return {"knowledge_base": save_path, "type": "UnstructuredFile"}
def load_knowledge_base_qa(path):
"""
Load json format knowledge base.
"""
print("path", path)
with open(path, "r") as f:
data = json.load(f)
embeddings = []
questions = []
answers = []
chunks = []
for idx in range(len(data.keys())):
embeddings.append(data[str(idx)]["emb"])
questions.append(data[str(idx)]["q"])
answers.append(data[str(idx)]["a"])
chunks.append(data[str(idx)]["chunk"])
embeddings = np.array(embeddings, dtype=np.float32)
embeddings = torch.from_numpy(embeddings).squeeze()
return embeddings, questions, answers, chunks
def load_knowledge_base_UnstructuredFile(path):
"""
Load json format knowledge base.
"""
with open(path, "r") as f:
data = json.load(f)
embeddings = []
chunks = []
for idx in range(len(data.keys())):
embeddings.append(data[str(idx)]["emb"])
chunks.append(data[str(idx)]["chunk"])
embeddings = np.array(embeddings, dtype=np.float32)
embeddings = torch.from_numpy(embeddings).squeeze()
return embeddings, chunks
def cos_sim(a: torch.Tensor, b: torch.Tensor):
"""
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
:return: Matrix with res[i][j] = cos_sim(a[i], b[j])
"""
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a_norm, b_norm.transpose(0, 1))
def matching_a_b(a, b, requirements=None):
a_embedder = get_embedding(a)
# 获取embedder
b_embeder = get_embedding(b)
sim_scores = cos_sim(a_embedder, b_embeder)[0]
return sim_scores
def matching_category(inputtext,
forest_name,
requirements=None,
cat_embedder=None,
top_k=3):
"""
Args:
inputtext: the category name to be matched
forest: search tree
top_k: the default three highest scoring results
Return:
topk matching_result. List[List] [[top1_name,top2_name,top3_name],[top1_score,top2_score,top3_score]]
"""
sim_scores = torch.zeros([100])
if inputtext:
input_embeder = get_embedding(inputtext)
sim_scores = cos_sim(input_embeder, cat_embedder)[0]
if requirements:
requirements = requirements.split(" ")
requirements_embedder = get_embedding(requirements)
req_scores = cos_sim(requirements_embedder, cat_embedder)
req_scores = torch.mean(req_scores, dim=0)
total_scores = req_scores
else:
total_scores = sim_scores
top_k_cat = torch.topk(total_scores, k=top_k)
top_k_score, top_k_idx = top_k_cat[0], top_k_cat[1]
top_k_name = [forest_name[top_k_idx[i]] for i in range(0, top_k)]
return [top_k_name, top_k_score.tolist(), top_k_idx]
def sample_with_order_preserved(lst, num):
"""Randomly sample from the list while maintaining the original order."""
indices = list(range(len(lst)))
sampled_indices = random.sample(indices, num)
sampled_indices.sort() # 保持原顺序
return [lst[i] for i in sampled_indices]
def limit_values(data, max_values):
"""Reduce each key-value list in the dictionary to the specified size, keeping the order of the original list unchanged."""
for key, values in data.items():
if len(values) > max_values:
data[key] = sample_with_order_preserved(values, max_values)
return data
def limit_keys(data, max_keys):
"""Reduce the dictionary to the specified number of keys."""
keys = list(data.keys())
if len(keys) > max_keys:
keys = sample_with_order_preserved(keys, max_keys)
data = {key: data[key] for key in keys}
return data
def flatten_dict(nested_dict):
"""
flatten the dictionary
"""
flattened_dict = {}
for key, value in nested_dict.items():
if isinstance(value, dict):
flattened_subdict = flatten_dict(value)
flattened_dict.update(flattened_subdict)
else:
flattened_dict[key] = value
return flattened_dict
def merge_list(list1, list2):
for l in list2:
if l not in list1:
list1.append(l)
return list1
def Search_Engines(req):
FETSIZE = eval(os.environ["FETSIZE"]) if "FETSIZE" in os.environ else 5
new_dict = {"keyword": req, "catLeafName": "", "fetchSize": FETSIZE}
url = os.environ["SHOPPING_SEARCH"]
res = requests.post(
url= url,
json=new_dict,
)
user_dict = json.loads(res.text)
if "data" in user_dict.keys():
request_items = user_dict["data"]["items"] # 查询到的商品信息JSON
top_category = user_dict["data"]["topCategories"]
return request_items, top_category
else:
return []
def search_with_api(requirements, categery):
FETSIZE = eval(os.environ["FETSIZE"]) if "FETSIZE" in os.environ else 5
request_items = []
all_req_list = requirements.split(" ")
count = 0
while len(request_items) < FETSIZE and len(all_req_list) > 0:
if count:
all_req_list.pop(0)
all_req = (" ").join(all_req_list)
if categery not in all_req_list:
all_req = all_req + " " + categery
now_request_items, top_category = Search_Engines(all_req)
request_items = merge_list(request_items, now_request_items)
count += 1
new_top = []
for category in top_category:
if "其它" in category or "其它" in category:
continue
else:
new_top.append(category)
if len(request_items) > FETSIZE:
request_items = request_items[:FETSIZE]
return request_items, new_top
def get_relevant_history(query,history,embeddings):
"""
Retrieve a list of key history entries based on a query using semantic search.
Args:
query (str): The input query for which key history is to be retrieved.
history (list): A list of historical key entries.
embeddings (numpy.ndarray): An array of embedding vectors for historical entries.
Returns:
list: A list of key history entries most similar to the query.
"""
TOP_K = eval(os.environ["TOP_K"]) if "TOP_K" in os.environ else 2
relevant_history = []
query_embedding = get_embedding(query)
hits = semantic_search(query_embedding, embeddings, top_k=min(TOP_K,embeddings.shape[0]))
hits = hits[0]
for hit in hits:
matching_idx = hit["corpus_id"]
try:
relevant_history.append(history[matching_idx])
except:
return []
return relevant_history
|