Spaces:
Runtime error
Runtime error
File size: 9,651 Bytes
2441227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# coding=utf-8
# Copyright 2023 The AIWaves Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LLM autonoumous agent"""
from LLM.base_LLM import *
from Component import *
from Action import Action
from Prompt import *
headers = {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"X-Accel-Buffering": "no",
}
class Agent:
"""
Auto agent, input the JSON of SOP.
"""
# Agent should have args: agents,states
def __init__(self, name, agent_state_roles, **kwargs) -> None:
self.state_roles = agent_state_roles
self.name = name
self.style = kwargs["style"]
self.LLMs = kwargs["LLMs"]
self.LLM = None
self.is_user = kwargs["is_user"]
self.begins = kwargs["begins"] if "begins" in kwargs else False
self.current_role = ""
self.long_term_memory = []
self.short_term_memory = ""
self.current_state = None
self.first_speak = True
self.environment = None
@classmethod
def from_config(cls, config_path):
"""
Initialize agents based on json file
Return:
agents(dict) : key:agent_name;value:class(Agent)
names_to_roles(dict) : key:state_name value:(dict; (key:agent_name ; value:agent_role))
roles_to_names(dict) : key:state_name value:(dict; (key:agent_role ; value:agent_name))
"""
with open(config_path) as f:
config = json.load(f)
roles_to_names = {}
names_to_roles = {}
agents = {}
user_names = json.loads(os.environ["User_Names"]) if "User_Names" in os.environ else []
for agent_name, agent_dict in config["agents"].items():
agent_state_roles = {}
agent_LLMs = {}
agent_begins = {}
for state_name, agent_role in agent_dict["roles"].items():
agent_begins[state_name] = {}
if state_name not in roles_to_names:
roles_to_names[state_name] = {}
if state_name not in names_to_roles:
names_to_roles[state_name] = {}
roles_to_names[state_name][agent_role] = agent_name
names_to_roles[state_name][agent_name] = agent_role
agent_state_roles[state_name] = agent_role
current_state = config["states"][state_name]
current_state_begin_role = current_state["begin_role"] if "begin_role" in current_state else current_state["roles"][0]
agent_begins[state_name]["is_begin"] = current_state_begin_role==agent_role if "begin_role" in current_state else False
agent_begins[state_name]["begin_query"] = current_state["begin_query"] if "begin_query" in current_state else " "
agent_LLMs[state_name] = init_LLM(f"logs/{agent_name}",**current_state["agent_states"][agent_role])
agents[agent_name] = cls(
agent_name,
agent_state_roles,
LLMs=agent_LLMs,
is_user=agent_name in user_names,
style = agent_dict["style"],
begins = agent_begins
)
assert len(config["agents"].keys()) != 2 or (roles_to_names[config["root"]][config["states"][config["root"]]["begin_role"]] not in user_names and "begin_query" in config["states"][config["root"]]),"In a single-agent scenario, there must be an opening statement and it must be the agent"
return agents, roles_to_names, names_to_roles
def step(self, current_state,input=""):
"""
return actions by current state and environment
Return: action(Action)
"""
current_state.chat_nums +=1
state_begin = current_state.is_begin
agent_begin = self.begins[current_state.name]["is_begin"]
self.begins[current_state.name]["is_begin"] = False
current_state.is_begin = False
environment = self.environment
self.current_state = current_state
# 先根据当前环境更新信息
# First update the information according to the current environment
response = " "
res_dict = {}
if self.is_user:
response = f"{self.name}:{input}"
else:
if len(environment.shared_memory["long_term_memory"])>0:
current_history = self.observe()
self.long_term_memory.append(current_history)
if agent_begin:
response = (char for char in self.begins[current_state.name]["begin_query"])
else:
response,res_dict = self.act()
action_dict = {
"response": response,
"res_dict": res_dict,
"role": self.state_roles[current_state.name],
"name": self.name,
"state_begin" : state_begin,
"agent_begin" : agent_begin,
"is_user" : self.is_user
}
return Action(**action_dict)
def act(self):
"""
return actions by the current state
"""
current_state = self.current_state
chat_history = self.long_term_memory
current_LLM = self.LLMs[current_state.name]
system_prompt, last_prompt, res_dict = self.compile()
response = current_LLM.get_response(
chat_history, system_prompt, last_prompt, stream=True
)
return response,res_dict
def update_memory(self, memory):
self.long_term_memory.append(
{"role": "assistant", "content": memory.content}
)
MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"])
environment = self.environment
current_chat_history_idx = environment.current_chat_history_idx if environment.environment_type == "competive" else 0
current_long_term_memory = environment.shared_memory["long_term_memory"][current_chat_history_idx:]
last_conversation_idx = environment._get_agent_last_conversation_idx(self,current_long_term_memory)
if len(current_long_term_memory)-last_conversation_idx >= MAX_CHAT_HISTORY:
current_state = self.current_state
current_role = self.state_roles[current_state.name]
current_component_dict = current_state.components[current_role]
# get chat history from new conversation
conversations = environment._get_agent_new_memory(self,current_long_term_memory)
# get summary
summary_prompt = (
current_state.summary_prompt[current_role]
if current_state.summary_prompt
else f"""your name is {self.name},your role is{current_component_dict["style"].role},your task is {current_component_dict["task"].task}.\n"""
)
summary_prompt =eval(Agent_summary_system_prompt)
summary = self.LLMs[current_state.name].get_response(None, summary_prompt,stream = False)
self.short_term_memory = summary
def compile(self):
"""
get prompt from state depend on your role
Return:
system_prompt:system_prompt for agents's LLM
last_prompt:last_prompt for agents's LLM
res_dict(dict): Other return from tool component.For example: search engine results
"""
current_state = self.current_state
self.current_roles = self.state_roles[current_state.name]
current_state_name = current_state.name
self.LLM = self.LLMs[current_state_name]
components = current_state.components[self.state_roles[current_state_name]]
system_prompt = self.current_state.environment_prompt
last_prompt = ""
res_dict = {}
for component in components.values():
if isinstance(component, (OutputComponent, LastComponent)):
last_prompt = last_prompt + "\n" + component.get_prompt(self)
elif isinstance(component, PromptComponent):
system_prompt = (
system_prompt + "\n" + component.get_prompt(self)
)
elif isinstance(component, ToolComponent):
response = component.func(self)
if "prompt" in response and response["prompt"]:
last_prompt = last_prompt + "\n" + response["prompt"]
res_dict.update(response)
name = self.name
query = self.environment.shared_memory["long_term_memory"][-1]
last_prompt = eval(Agent_last_prompt)
system_prompt = eval(Agent_system_prompt)
return system_prompt, last_prompt, res_dict
def observe(self):
"""
Update one's own memory according to the current environment, including: updating short-term memory; updating long-term memory
"""
return self.environment._observe(self)
def generate_sop(self):
pass
def reflection(self):
pass
|