Spaces:
Runtime error
Runtime error
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
import torch | |
import gradio as gr | |
# PersistDataset ----- | |
import os | |
import csv | |
import gradio as gr | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv" | |
DATASET_REPO_ID = "awacke1/Carddata.csv" | |
DATA_FILENAME = "Carddata.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
SCRIPT = """ | |
<script> | |
if (!window.hasBeenRun) { | |
window.hasBeenRun = true; | |
console.log("should only happen once"); | |
document.querySelector("button.submit").click(); | |
} | |
</script> | |
""" | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def generate_html() -> str: | |
with open(DATA_FILE) as csvfile: | |
reader = csv.DictReader(csvfile) | |
rows = [] | |
for row in reader: | |
rows.append(row) | |
rows.reverse() | |
if len(rows) == 0: | |
return "no messages yet" | |
else: | |
html = "<div class='chatbot'>" | |
for row in rows: | |
html += "<div>" | |
html += f"<span>{row['inputs']}</span>" | |
html += f"<span class='outputs'>{row['outputs']}</span>" | |
html += "</div>" | |
html += "</div>" | |
return html | |
def store_message(name: str, message: str): | |
if name and message: | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) | |
writer.writerow( | |
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())} | |
) | |
commit_url = repo.push_to_hub() | |
return "" | |
iface = gr.Interface( | |
store_message, | |
[ | |
inputs.Textbox(placeholder="Your name"), | |
inputs.Textbox(placeholder="Your message", lines=2), | |
], | |
"html", | |
css=""" | |
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; } | |
""", | |
title="Reading/writing to a HuggingFace dataset repo from Spaces", | |
description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.", | |
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})", | |
) | |
mname = "facebook/blenderbot-400M-distill" | |
model = BlenderbotForConditionalGeneration.from_pretrained(mname) | |
tokenizer = BlenderbotTokenizer.from_pretrained(mname) | |
def take_last_tokens(inputs, note_history, history): | |
"""Filter the last 128 tokens""" | |
if inputs['input_ids'].shape[1] > 128: | |
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
history = history[1:] | |
return inputs, note_history, history | |
def add_note_to_history(note, note_history): | |
"""Add a note to the historical information""" | |
note_history.append(note) | |
note_history = '</s> <s>'.join(note_history) | |
return [note_history] | |
title = "Chatbot State of the Art now with Memory Saved to Dataset" | |
description = """Chatbot With Memory""" | |
def chat(message, history): | |
history = history or [] | |
if history: | |
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
else: | |
history_useful = [] | |
history_useful = add_note_to_history(message, history_useful) | |
inputs = tokenizer(history_useful, return_tensors="pt") | |
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
reply_ids = model.generate(**inputs) | |
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
history_useful = add_note_to_history(response, history_useful) | |
list_history = history_useful[0].split('</s> <s>') | |
history.append((list_history[-2], list_history[-1])) | |
store_message(message, response) # Save to dataset | |
return history, history | |
gr.Interface( | |
fn=chat, | |
theme="huggingface", | |
css=".footer {display:none !important}", | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"], | |
title=title, | |
allow_flagging="never", | |
description=f"Gradio chatbot backed by memory in a dataset repository.", | |
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})" | |
).launch() |