Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import time | |
import librosa | |
import soundfile | |
import nemo.collections.asr as nemo_asr | |
import tempfile | |
import os | |
import uuid | |
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
import torch | |
# PersistDataset ----- | |
import os | |
import csv | |
import gradio as gr | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv" | |
DATASET_REPO_ID = "awacke1/Carddata.csv" | |
DATA_FILENAME = "Carddata.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
SCRIPT = """ | |
<script> | |
if (!window.hasBeenRun) { | |
window.hasBeenRun = true; | |
console.log("should only happen once"); | |
document.querySelector("button.submit").click(); | |
} | |
</script> | |
""" | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def generate_html() -> str: | |
with open(DATA_FILE) as csvfile: | |
reader = csv.DictReader(csvfile) | |
rows = [] | |
for row in reader: | |
rows.append(row) | |
rows.reverse() | |
if len(rows) == 0: | |
return "no messages yet" | |
else: | |
html = "<div class='chatbot'>" | |
for row in rows: | |
html += "<div>" | |
html += f"<span>{row['inputs']}</span>" | |
html += f"<span class='outputs'>{row['outputs']}</span>" | |
html += "</div>" | |
html += "</div>" | |
return html | |
def store_message(name: str, message: str): | |
if name and message: | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) | |
writer.writerow( | |
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())} | |
) | |
commit_url = repo.push_to_hub() | |
return "" | |
iface = gr.Interface( | |
store_message, | |
[ | |
inputs.Textbox(placeholder="Your name"), | |
inputs.Textbox(placeholder="Your message", lines=2), | |
], | |
"html", | |
css=""" | |
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; } | |
""", | |
title="Reading/writing to a HuggingFace dataset repo from Spaces", | |
description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.", | |
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})", | |
) | |
mname = "facebook/blenderbot-400M-distill" | |
model = BlenderbotForConditionalGeneration.from_pretrained(mname) | |
tokenizer = BlenderbotTokenizer.from_pretrained(mname) | |
def take_last_tokens(inputs, note_history, history): | |
"""Filter the last 128 tokens""" | |
if inputs['input_ids'].shape[1] > 128: | |
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
history = history[1:] | |
return inputs, note_history, history | |
def add_note_to_history(note, note_history): | |
"""Add a note to the historical information""" | |
note_history.append(note) | |
note_history = '</s> <s>'.join(note_history) | |
return [note_history] | |
def chat(message, history): | |
history = history or [] | |
if history: | |
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
else: | |
history_useful = [] | |
history_useful = add_note_to_history(message, history_useful) | |
inputs = tokenizer(history_useful, return_tensors="pt") | |
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
reply_ids = model.generate(**inputs) | |
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
history_useful = add_note_to_history(response, history_useful) | |
list_history = history_useful[0].split('</s> <s>') | |
history.append((list_history[-2], list_history[-1])) | |
store_message(message, response) # Save to dataset | |
return history, history | |
SAMPLE_RATE = 16000 | |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge") | |
model.change_decoding_strategy(None) | |
model.eval() | |
def process_audio_file(file): | |
data, sr = librosa.load(file) | |
if sr != SAMPLE_RATE: | |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) | |
# monochannel | |
data = librosa.to_mono(data) | |
return data | |
#def transcribe(audio, state = "", im4 = "", file = ""): | |
#def transcribe(audio, state = "", im4 = None, file = None): | |
def transcribe(audio, state = ""): # two parms - had been testing video and file inputs at same time. | |
# Grant additional context | |
# time.sleep(1) | |
if state is None: | |
state = "" | |
audio_data = process_audio_file(audio) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Filepath transcribe | |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav') | |
soundfile.write(audio_path, audio_data, SAMPLE_RATE) | |
transcriptions = model.transcribe([audio_path]) | |
# Direct transcribe | |
# transcriptions = model.transcribe([audio]) | |
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis | |
if type(transcriptions) == tuple and len(transcriptions) == 2: | |
transcriptions = transcriptions[0] | |
transcriptions = transcriptions[0] | |
store_message(transcriptions, state) # Save to dataset | |
state = state + transcriptions + " " | |
return state, state | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type='filepath', streaming=True), | |
"state", | |
#gr.Image(label="Webcam", source="webcam"), | |
#gr.File(label="File"), | |
], | |
outputs=[ | |
"textbox", | |
"state", | |
#gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}), | |
#gr.HighlightedText(label="HighlightedText", show_legend=True), | |
#gr.JSON(label="JSON"), | |
#gr.HTML(label="HTML"), | |
], | |
layout="horizontal", | |
theme="huggingface", | |
title="🗣️LiveSpeechRecognition🧠Memory💾", | |
description=f"Live Automatic Speech Recognition (ASR) with Memory💾 Dataset.", | |
allow_flagging='never', | |
live=True, | |
article=f"Result Output Saved to Memory💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})" | |
) | |
iface.launch() | |