Spaces:
Sleeping
Sleeping
File size: 21,235 Bytes
504d5ce 77d4950 504d5ce 77d4950 504d5ce 77d4950 504d5ce 77d4950 504d5ce 77d4950 504d5ce 77d4950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# FB Page: https://www.facebook.com/AIsparking
import streamlit as st
import yfinance as yf
import pandas as pd
import numpy as np
from ta.trend import MACD
from ta.momentum import RSIIndicator, StochasticOscillator
from ta.volatility import AverageTrueRange, BollingerBands
from ta.volume import VolumeWeightedAveragePrice
import plotly.graph_objects as go
from datetime import datetime, timedelta
import plotly.subplots as sp
from ta.trend import IchimokuIndicator
# Set page config
st.set_page_config(layout="wide", page_title="Stock Technical Analysis")
# Functions from previous implementations remain the same
# Add error handling wrapper
def safe_execute(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
st.error(f"Error: {str(e)}")
return None
return wrapper
@safe_execute
def get_stock_data(symbol, market, nYear):
if market == 'HK':
symbol = f'{symbol}.HK'
end_date = datetime.now()
start_date = end_date - timedelta(days=nYear*365)
df = yf.download(symbol, start=start_date, end=end_date)
if df.empty:
raise ValueError("No data found for this symbol")
return df
# Combine all technical indicators
@safe_execute
def generate_recommendation(df):
last_row = df.iloc[-1]
signals = []
# RSI signals
if last_row['RSI'] < 30:
signals.append(('BUY', 'RSI oversold'))
elif last_row['RSI'] > 70:
signals.append(('SELL', 'RSI overbought'))
# Stochastic signals
if last_row['%K'] < 20 and last_row['%D'] < 20:
signals.append(('BUY', 'Stochastic oversold'))
elif last_row['%K'] > 80 and last_row['%D'] > 80:
signals.append(('SELL', 'Stochastic overbought'))
# MACD signals
if last_row['MACD'] > last_row['MACD_Signal']:
signals.append(('BUY', 'MACD crossover'))
elif last_row['MACD'] < last_row['MACD_Signal']:
signals.append(('SELL', 'MACD crossunder'))
return signals
def calculate_indicators(df):
# Calculate RSI
rsi = RSIIndicator(df['Close'])
df['RSI'] = rsi.rsi()
# Calculate Stochastic
stoch = StochasticOscillator(df['High'], df['Low'], df['Close'])
df['%K'] = stoch.stoch()
df['%D'] = stoch.stoch_signal()
# Calculate MACD
macd = MACD(df['Close'])
df['MACD'] = macd.macd()
df['MACD_Signal'] = macd.macd_signal()
# Calculate ATR
atr = AverageTrueRange(df['High'], df['Low'], df['Close'])
df['ATR'] = atr.average_true_range()
# Add multiple SMAs
df['SMA20'] = df['Close'].rolling(window=20).mean()
df['SMA50'] = df['Close'].rolling(window=50).mean()
df['SMA100'] = df['Close'].rolling(window=100).mean()
df['SMA200'] = df['Close'].rolling(window=200).mean()
# Calculate ATR
atr = AverageTrueRange(df['High'], df['Low'], df['Close'])
df['ATR'] = atr.average_true_range()
# Calculate VWAP
vwap = VolumeWeightedAveragePrice(high=df['High'],
low=df['Low'],
close=df['Close'],
volume=df['Volume'])
df['VWAP'] = vwap.volume_weighted_average_price()
return df
def calculate_additional_indicators(df):
# Add Bollinger Bands
bb = BollingerBands(df['Close'])
df['BB_upper'] = bb.bollinger_hband()
df['BB_lower'] = bb.bollinger_lband()
df['BB_middle'] = bb.bollinger_mavg()
# Add Moving Averages
df['MA50'] = df['Close'].rolling(window=50).mean()
df['MA200'] = df['Close'].rolling(window=200).mean()
# Add VWAP
vwap = VolumeWeightedAveragePrice(high=df['High'], low=df['Low'],
close=df['Close'], volume=df['Volume'])
df['VWAP'] = vwap.volume_weighted_average_price()
return df
def calculate_ema(df):
# Calculate EMAs
df['EMA9'] = df['Close'].ewm(span=9, adjust=False).mean()
df['EMA21'] = df['Close'].ewm(span=21, adjust=False).mean()
return df
def calculate_obv(df):
# Calculate OBV
obv = []
prev_obv = 0
for i in range(len(df)):
if i == 0:
obv.append(prev_obv)
continue
if df['Close'].iloc[i] > df['Close'].iloc[i-1]:
current_obv = prev_obv + df['Volume'].iloc[i]
elif df['Close'].iloc[i] < df['Close'].iloc[i-1]:
current_obv = prev_obv - df['Volume'].iloc[i]
else:
current_obv = prev_obv
obv.append(current_obv)
prev_obv = current_obv
df['OBV'] = obv
return df
def calculate_ichimoku(df):
ichimoku = IchimokuIndicator(high=df['High'], low=df['Low'])
df['ichimoku_a'] = ichimoku.ichimoku_a()
df['ichimoku_b'] = ichimoku.ichimoku_b()
df['ichimoku_base'] = ichimoku.ichimoku_base_line()
df['ichimoku_conversion'] = ichimoku.ichimoku_conversion_line()
return df
def calculate_all_indicators(df):
df = calculate_indicators(df)
df = calculate_additional_indicators(df)
df = calculate_ema(df)
df = calculate_obv(df)
df = calculate_ichimoku(df)
return df
def enhanced_recommendation(df):
last_row = df.iloc[-1]
prev_row = df.iloc[-2]
signals = []
# Add EMA signals
if last_row['EMA9'] > last_row['EMA21']:
signals.append(('BUY', 'EMA9 crossed above EMA21'))
elif last_row['EMA9'] < last_row['EMA21']:
signals.append(('SELL', 'EMA9 crossed below EMA21'))
# Add Ichimoku signals
if (last_row['ichimoku_conversion'] > last_row['ichimoku_base'] and
last_row['Close'] > last_row['ichimoku_a']):
signals.append(('BUY', 'Ichimoku bullish signal'))
elif (last_row['ichimoku_conversion'] < last_row['ichimoku_base'] and
last_row['Close'] < last_row['ichimoku_b']):
signals.append(('SELL', 'Ichimoku bearish signal'))
# Add OBV signals
if df['OBV'].iloc[-1] > df['OBV'].iloc[-2]:
signals.append(('BUY', 'OBV increasing'))
else:
signals.append(('SELL', 'OBV decreasing'))
# Add SMA signals
if (last_row['SMA20'] > last_row['SMA50'] and
prev_row['SMA20'] <= prev_row['SMA50']):
signals.append(('BUY', 'SMA20 crossed above SMA50'))
elif (last_row['SMA20'] < last_row['SMA50'] and
prev_row['SMA20'] >= prev_row['SMA50']):
signals.append(('SELL', 'SMA20 crossed below SMA50'))
# Add VWAP signals
if last_row['Close'] > last_row['VWAP']:
signals.append(('BUY', 'Price above VWAP'))
else:
signals.append(('SELL', 'Price below VWAP'))
# Add ATR-based volatility signals
atr_threshold = df['ATR'].mean() * 1.5
if last_row['ATR'] > atr_threshold:
signals.append(('HOLD', 'High volatility detected by ATR'))
return signals
# Main app layout
st.title('Advanced Stock Technical Analysis')
# Sidebar for inputs
with st.sidebar:
st.header('Input Parameters')
market = st.selectbox('Select Market', ['HK','US'])
symbol = st.text_input('Enter Stock Symbol (e.g. 0700 for HK):')
# Add analysis timeframe option
timeframe = st.selectbox('Select Timeframe', ['1y','2y','3y','5y','8y','10y'])
nYear = int(timeframe.split("y")[0])
if st.sidebar.button('Analyze'):
if symbol:
with st.spinner('Fetching and analyzing data...'):
df = get_stock_data(symbol, market,nYear)
if df is not None:
df = calculate_all_indicators(df)
# Create tabs for different analyses
tab1, tab2, tab3 = st.tabs(['Price Analysis', 'Technical Indicators', 'Technical Analysis'])
with tab1:
# Main price chart with volume
fig = sp.make_subplots(rows=2, cols=1, shared_xaxes=True,
vertical_spacing=0.03, row_heights=[0.7, 0.3])
fig.add_trace(go.Candlestick(x=df.index, open=df['Open'],
high=df['High'], low=df['Low'],
close=df['Close'], name='Price'),
row=1, col=1)
# Add Moving Averages
fig.add_trace(go.Scatter(x=df.index, y=df['MA50'],
name='MA50', line=dict(color='orange')),
row=1, col=1)
fig.add_trace(go.Scatter(x=df.index, y=df['MA200'],
name='MA200', line=dict(color='blue')),
row=1, col=1)
# Add volume bars
colors = ['red' if row['Open'] > row['Close'] else 'green'
for index, row in df.iterrows()]
fig.add_trace(go.Bar(x=df.index, y=df['Volume'],
marker_color=colors, name='Volume'),
row=2, col=1)
fig.update_layout(height=800)
st.plotly_chart(fig, use_container_width=True)
with tab2:
col1, col2 = st.columns(2)
with col1:
# RSI Plot
fig_rsi = go.Figure()
fig_rsi.add_trace(go.Scatter(x=df.index, y=df['RSI'],
name='RSI'))
fig_rsi.add_hline(y=70, line_dash="dash", line_color="red")
fig_rsi.add_hline(y=30, line_dash="dash", line_color="green")
fig_rsi.update_layout(title='RSI Indicator')
st.plotly_chart(fig_rsi)
# MACD Plot
fig_macd = go.Figure()
fig_macd.add_trace(go.Scatter(x=df.index, y=df['MACD'],
name='MACD'))
fig_macd.add_trace(go.Scatter(x=df.index, y=df['MACD_Signal'],
name='Signal'))
fig_macd.update_layout(title='MACD Indicator')
st.plotly_chart(fig_macd)
# EMA Plot
fig_ema = go.Figure()
fig_ema.add_trace(go.Scatter(x=df.index, y=df['EMA9'], name='EMA9'))
fig_ema.add_trace(go.Scatter(x=df.index, y=df['EMA21'], name='EMA21'))
fig_ema.update_layout(title='EMA Indicators')
st.plotly_chart(fig_ema)
# OBV Plot
fig_obv = go.Figure()
fig_obv.add_trace(go.Scatter(x=df.index, y=df['OBV'], name='OBV'))
fig_obv.update_layout(title='On-Balance Volume (OBV)')
st.plotly_chart(fig_obv)
# VWAP Plot
fig_vwap = go.Figure()
fig_vwap.add_trace(go.Scatter(x=df.index, y=df['Close'], name='Price'))
fig_vwap.add_trace(go.Scatter(x=df.index, y=df['VWAP'],
name='VWAP', line=dict(color='orange')))
fig_vwap.update_layout(title='Volume Weighted Average Price (VWAP)')
st.plotly_chart(fig_vwap)
with col2:
# Stochastic Plot
fig_stoch = go.Figure()
fig_stoch.add_trace(go.Scatter(x=df.index, y=df['%K'],
name='%K'))
fig_stoch.add_trace(go.Scatter(x=df.index, y=df['%D'],
name='%D'))
fig_stoch.update_layout(title='Stochastic Oscillator')
st.plotly_chart(fig_stoch)
# Bollinger Bands
fig_bb = go.Figure()
fig_bb.add_trace(go.Scatter(x=df.index, y=df['BB_upper'],
name='Upper Band'))
fig_bb.add_trace(go.Scatter(x=df.index, y=df['Close'],
name='Price'))
fig_bb.add_trace(go.Scatter(x=df.index, y=df['BB_lower'],
name='Lower Band'))
fig_bb.update_layout(title='Bollinger Bands')
st.plotly_chart(fig_bb)
# Ichimoku Cloud
fig_ichimoku = go.Figure()
fig_ichimoku.add_trace(go.Scatter(x=df.index, y=df['ichimoku_a'], name='Senkou Span A'))
fig_ichimoku.add_trace(go.Scatter(x=df.index, y=df['ichimoku_b'], name='Senkou Span B'))
fig_ichimoku.add_trace(go.Scatter(x=df.index, y=df['ichimoku_base'], name='Kijun-sen'))
fig_ichimoku.add_trace(go.Scatter(x=df.index, y=df['ichimoku_conversion'], name='Tenkan-sen'))
fig_ichimoku.update_layout(title='Ichimoku Cloud')
st.plotly_chart(fig_ichimoku)
# SMA Plot
fig_sma = go.Figure()
fig_sma.add_trace(go.Scatter(x=df.index, y=df['Close'], name='Price'))
fig_sma.add_trace(go.Scatter(x=df.index, y=df['SMA20'], name='SMA20'))
fig_sma.add_trace(go.Scatter(x=df.index, y=df['SMA50'], name='SMA50'))
fig_sma.add_trace(go.Scatter(x=df.index, y=df['SMA100'], name='SMA100'))
fig_sma.add_trace(go.Scatter(x=df.index, y=df['SMA200'], name='SMA200'))
fig_sma.update_layout(title='Simple Moving Averages (SMA)')
st.plotly_chart(fig_sma)
# ATR Plot
fig_atr = go.Figure()
fig_atr.add_trace(go.Scatter(x=df.index, y=df['ATR'], name='ATR'))
fig_atr.update_layout(title='Average True Range (ATR)')
st.plotly_chart(fig_atr)
with tab3:
st.subheader('Technical Analysis')
# Combine all signals
signals = generate_recommendation(df)
enhanced_signals = enhanced_recommendation(df)
all_signals = signals + enhanced_signals
# Count buy and sell signals
buy_signals = len([s for s in all_signals if s[0] == 'BUY'])
sell_signals = len([s for s in all_signals if s[0] == 'SELL'])
# Display recommendation summary
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Buy Signals", buy_signals)
with col2:
st.metric("Sell Signals", sell_signals)
with col3:
overall_rec = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD"
if overall_rec == "BUY":
st.success(f"Overall: {overall_rec} π")
elif overall_rec == "SELL":
st.error(f"Overall: {overall_rec} π")
else:
st.warning(f"Overall: {overall_rec} βοΈ")
# Display detailed signals
st.subheader("Detailed Signals:")
for signal, reason in all_signals:
if signal == 'BUY':
st.success(f"π’ {signal}: {reason}")
else:
st.error(f"π΄ {signal}: {reason}")
# Technical Indicators Summary
st.subheader("Technical Indicators Summary")
# Create expandable section for current price levels
with st.expander("π Current Price Levels", expanded=True):
current_price = df['Close'].iloc[-1]
prev_close = df['Close'].iloc[-2]
price_change = ((current_price - prev_close) / prev_close) * 100
# Price information with colored indicators
if price_change > 0:
st.success(f"π Current Price: ${current_price:.2f} (+{price_change:.2f}%)")
else:
st.error(f"π Current Price: ${current_price:.2f} ({price_change:.2f}%)")
# Display technical levels in a more organized way
col1, col2, col3 = st.columns(3)
with col1:
st.info(f"πΉ VWAP\n${df['VWAP'].iloc[-1]:.2f}")
with col2:
st.info(f"π ATR\n${df['ATR'].iloc[-1]:.2f}")
with col3:
st.info(f"π SMA50\n${df['SMA50'].iloc[-1]:.2f}")
# Moving Averages Analysis
with st.expander("π Moving Averages Analysis", expanded=True):
sma_status = "Bullish" if (df['SMA20'].iloc[-1] > df['SMA50'].iloc[-1]) else "Bearish"
sma_icon = "π’" if sma_status == "Bullish" else "π΄"
st.write(f"{sma_icon} SMA20 vs SMA50: {sma_status}")
# Add more SMA comparisons
sma_100_status = "Bullish" if (df['Close'].iloc[-1] > df['SMA100'].iloc[-1]) else "Bearish"
sma_100_icon = "π’" if sma_100_status == "Bullish" else "π΄"
st.write(f"{sma_100_icon} Price vs SMA100: {sma_100_status}")
sma_200_status = "Bullish" if (df['Close'].iloc[-1] > df['SMA200'].iloc[-1]) else "Bearish"
sma_200_icon = "π’" if sma_200_status == "Bullish" else "π΄"
st.write(f"{sma_200_icon} Price vs SMA200: {sma_200_status}")
# Volatility Analysis
with st.expander("π Volatility Analysis", expanded=True):
atr_avg = df['ATR'].mean()
current_atr = df['ATR'].iloc[-1]
atr_ratio = current_atr / atr_avg
if atr_ratio > 1.5:
volatility = "High"
vol_icon = "β οΈ"
st.warning(f"{vol_icon} Volatility: {volatility}")
elif atr_ratio < 0.5:
volatility = "Low"
vol_icon = "π€"
st.info(f"{vol_icon} Volatility: {volatility}")
else:
volatility = "Normal"
vol_icon = "β
"
st.success(f"{vol_icon} Volatility: {volatility}")
st.write(f"ATR Ratio: {atr_ratio:.2f}x average")
# VWAP Analysis
with st.expander("πΉ VWAP Analysis", expanded=True):
vwap_diff = ((df['Close'].iloc[-1] - df['VWAP'].iloc[-1]) / df['VWAP'].iloc[-1]) * 100
if vwap_diff > 0:
st.success(f"π’ Price is ABOVE VWAP by {abs(vwap_diff):.2f}%")
else:
st.error(f"π΄ Price is BELOW VWAP by {abs(vwap_diff):.2f}%")
# Add risk warning
st.warning("β οΈ Disclaimer: Above analysis is for AI Research and Learning purposes only. DO NOT make any investment decisions according to the displayed information and analysis result.")
else:
st.error('Error fetching stock data. Please check the symbol.')
else:
st.warning('Please enter a stock symbol.')
with st.sidebar:
# Add a horizontal line
st.markdown("---")
# Add text at the bottom
st.warning("β οΈ Disclaimer: This is for AI Research and Learning purposes only. DO NOT make any investment decisions according to the displayed information and analysis result.")
st.markdown("---")
st.write("https://www.facebook.com/AIsparking") |