Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 6,650 Bytes
2d272e2
 
 
a3d4c8d
2d272e2
 
 
 
a3d4c8d
 
 
 
 
 
 
 
 
98e75e7
2d272e2
 
 
 
 
 
 
ec8e2d4
2d272e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8e2d4
2d272e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8e2d4
2d272e2
 
 
 
 
 
 
 
 
 
 
ec8e2d4
2d272e2
 
ec8e2d4
2d272e2
1a22df4
 
2d272e2
 
 
 
 
 
 
 
ec8e2d4
 
 
 
 
 
2d272e2
 
 
 
 
 
 
 
 
 
 
 
ec8e2d4
2d272e2
 
 
 
 
 
 
 
 
7845083
 
2d272e2
26e4c47
 
 
 
2d272e2
26e4c47
6f9f649
 
 
 
 
 
 
f29af77
 
 
 
 
 
 
 
 
 
 
2bee5cb
ace0540
2bee5cb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional

import pandas as pd

from src.columns import (
    COL_NAME_IS_ANONYMOUS,
    COL_NAME_RERANKING_MODEL,
    COL_NAME_RERANKING_MODEL_LINK,
    COL_NAME_RETRIEVAL_MODEL,
    COL_NAME_RETRIEVAL_MODEL_LINK,
    COL_NAME_REVISION,
    COL_NAME_TIMESTAMP,
)


@dataclass
class EvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different
    domains, languages, and datasets
    """

    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]_[metric]
    retrieval_model: str
    reranking_model: str
    results: list  # results on all the benchmarks stored as dict
    task: str
    metric: str
    timestamp: str = ""  # submission timestamp
    revision: str = ""
    is_anonymous: bool = False


@dataclass
class FullEvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks
    """

    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]
    retrieval_model: str
    reranking_model: str
    retrieval_model_link: str
    reranking_model_link: str
    results: List[EvalResult]  # results on all the EvalResults over different tasks and metrics.
    timestamp: str = ""
    revision: str = ""
    is_anonymous: bool = False

    @classmethod
    def init_from_json_file(cls, json_filepath):
        """
        Initiate from the result json file for a single model.
        The json file will be written only when the status is FINISHED.
        """
        with open(json_filepath) as fp:
            model_data = json.load(fp)

        # store all the results for different metrics and tasks
        result_list = []
        retrieval_model_link = ""
        reranking_model_link = ""
        for item in model_data:
            config = item.get("config", {})
            # eval results for different metrics
            results = item.get("results", [])
            retrieval_model_link = config["retrieval_model_link"]
            if config["reranking_model_link"] is None:
                reranking_model_link = ""
            else:
                reranking_model_link = config["reranking_model_link"]
            eval_result = EvalResult(
                eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}",
                retrieval_model=config["retrieval_model"],
                reranking_model=config["reranking_model"],
                results=results,
                task=config["task"],
                metric=config["metric"],
                timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
                revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
                is_anonymous=config.get("is_anonymous", False),
            )
            result_list.append(eval_result)
        return cls(
            eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}",
            retrieval_model=result_list[0].retrieval_model,
            reranking_model=result_list[0].reranking_model,
            retrieval_model_link=retrieval_model_link,
            reranking_model_link=reranking_model_link,
            results=result_list,
            timestamp=result_list[0].timestamp,
            revision=result_list[0].revision,
            is_anonymous=result_list[0].is_anonymous,
        )

    def to_dict(self, task="qa", metric="ndcg_at_3") -> List:
        """
        Convert the results in all the EvalResults over different tasks and metrics.
        The output is a list of dict compatible with the dataframe UI
        """
        results = defaultdict(dict)
        for eval_result in self.results:
            if eval_result.metric != metric:
                continue
            if eval_result.task != task:
                continue
            results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = make_clickable_model(
                self.retrieval_model, self.retrieval_model_link
            )
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = make_clickable_model(
                self.reranking_model, self.reranking_model_link
            )
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
            results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
            results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
            results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous

            for result in eval_result.results:
                # add result for each domain, language, and dataset
                domain = result["domain"]
                lang = result["lang"]
                dataset = result["dataset"]
                value = result["value"] * 100
                if dataset == "default":
                    benchmark_name = f"{domain}_{lang}"
                else:
                    benchmark_name = f"{domain}_{lang}_{dataset}"
                results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
        return [v for v in results.values()]


@dataclass
class LeaderboardDataStore:
    version: str
    slug: str
    raw_data: Optional[list]
    qa_raw_df: Optional[pd.DataFrame]
    doc_raw_df: Optional[pd.DataFrame]
    qa_fmt_df: Optional[pd.DataFrame]
    doc_fmt_df: Optional[pd.DataFrame]
    reranking_models: Optional[list]
    qa_types: Optional[list]
    doc_types: Optional[list]


# Define an enum class with the name `TaskType`. There are two types of tasks, `qa` and `long-doc`.
class TaskType(Enum):
    qa = "qa"
    long_doc = "long-doc"


def make_clickable_model(model_name: str, model_link: str):
    # link = f"https://huggingface.co/{model_name}"
    if not model_link or not model_link.startswith("https://"):
        return model_name
    return model_hyperlink(model_link, model_name)


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def get_safe_name(name: str):
    """Get RFC 1123 compatible safe name"""
    name = name.replace("-", "_")
    return "".join(character.lower() for character in name if (character.isalnum() or character == "_"))