Spaces:
AIMan2001
/
Runtime error

File size: 16,124 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Created on 2018/12
# Author: Kaituo XU
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels
# Here is the original license:
# The MIT License (MIT)
#
# Copyright (c) 2018 Kaituo XU
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import capture_init

EPS = 1e-8


def overlap_and_add(signal, frame_step):
    outer_dimensions = signal.size()[:-2]
    frames, frame_length = signal.size()[-2:]

    subframe_length = math.gcd(frame_length, frame_step)  # gcd=Greatest Common Divisor
    subframe_step = frame_step // subframe_length
    subframes_per_frame = frame_length // subframe_length
    output_size = frame_step * (frames - 1) + frame_length
    output_subframes = output_size // subframe_length

    subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)

    frame = torch.arange(0, output_subframes,
                         device=signal.device).unfold(0, subframes_per_frame, subframe_step)
    frame = frame.long()  # signal may in GPU or CPU
    frame = frame.contiguous().view(-1)

    result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
    result.index_add_(-2, frame, subframe_signal)
    result = result.view(*outer_dimensions, -1)
    return result


class ConvTasNet(nn.Module):
    @capture_init
    def __init__(self,
                 sources,
                 N=256,
                 L=20,
                 B=256,
                 H=512,
                 P=3,
                 X=8,
                 R=4,
                 audio_channels=2,
                 norm_type="gLN",
                 causal=False,
                 mask_nonlinear='relu',
                 samplerate=44100,
                 segment_length=44100 * 2 * 4):
        """
        Args:
            sources: list of sources
            N: Number of filters in autoencoder
            L: Length of the filters (in samples)
            B: Number of channels in bottleneck 1 × 1-conv block
            H: Number of channels in convolutional blocks
            P: Kernel size in convolutional blocks
            X: Number of convolutional blocks in each repeat
            R: Number of repeats
            norm_type: BN, gLN, cLN
            causal: causal or non-causal
            mask_nonlinear: use which non-linear function to generate mask
        """
        super(ConvTasNet, self).__init__()
        # Hyper-parameter
        self.sources = sources
        self.C = len(sources)
        self.N, self.L, self.B, self.H, self.P, self.X, self.R = N, L, B, H, P, X, R
        self.norm_type = norm_type
        self.causal = causal
        self.mask_nonlinear = mask_nonlinear
        self.audio_channels = audio_channels
        self.samplerate = samplerate
        self.segment_length = segment_length
        # Components
        self.encoder = Encoder(L, N, audio_channels)
        self.separator = TemporalConvNet(
            N, B, H, P, X, R, self.C, norm_type, causal, mask_nonlinear)
        self.decoder = Decoder(N, L, audio_channels)
        # init
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_normal_(p)

    def valid_length(self, length):
        return length

    def forward(self, mixture):
        """
        Args:
            mixture: [M, T], M is batch size, T is #samples
        Returns:
            est_source: [M, C, T]
        """
        mixture_w = self.encoder(mixture)
        est_mask = self.separator(mixture_w)
        est_source = self.decoder(mixture_w, est_mask)

        # T changed after conv1d in encoder, fix it here
        T_origin = mixture.size(-1)
        T_conv = est_source.size(-1)
        est_source = F.pad(est_source, (0, T_origin - T_conv))
        return est_source


class Encoder(nn.Module):
    """Estimation of the nonnegative mixture weight by a 1-D conv layer.
    """
    def __init__(self, L, N, audio_channels):
        super(Encoder, self).__init__()
        # Hyper-parameter
        self.L, self.N = L, N
        # Components
        # 50% overlap
        self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False)

    def forward(self, mixture):
        """
        Args:
            mixture: [M, T], M is batch size, T is #samples
        Returns:
            mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
        """
        mixture_w = F.relu(self.conv1d_U(mixture))  # [M, N, K]
        return mixture_w


class Decoder(nn.Module):
    def __init__(self, N, L, audio_channels):
        super(Decoder, self).__init__()
        # Hyper-parameter
        self.N, self.L = N, L
        self.audio_channels = audio_channels
        # Components
        self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)

    def forward(self, mixture_w, est_mask):
        """
        Args:
            mixture_w: [M, N, K]
            est_mask: [M, C, N, K]
        Returns:
            est_source: [M, C, T]
        """
        # D = W * M
        source_w = torch.unsqueeze(mixture_w, 1) * est_mask  # [M, C, N, K]
        source_w = torch.transpose(source_w, 2, 3)  # [M, C, K, N]
        # S = DV
        est_source = self.basis_signals(source_w)  # [M, C, K, ac * L]
        m, c, k, _ = est_source.size()
        est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous()
        est_source = overlap_and_add(est_source, self.L // 2)  # M x C x ac x T
        return est_source


class TemporalConvNet(nn.Module):
    def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'):
        """
        Args:
            N: Number of filters in autoencoder
            B: Number of channels in bottleneck 1 × 1-conv block
            H: Number of channels in convolutional blocks
            P: Kernel size in convolutional blocks
            X: Number of convolutional blocks in each repeat
            R: Number of repeats
            C: Number of speakers
            norm_type: BN, gLN, cLN
            causal: causal or non-causal
            mask_nonlinear: use which non-linear function to generate mask
        """
        super(TemporalConvNet, self).__init__()
        # Hyper-parameter
        self.C = C
        self.mask_nonlinear = mask_nonlinear
        # Components
        # [M, N, K] -> [M, N, K]
        layer_norm = ChannelwiseLayerNorm(N)
        # [M, N, K] -> [M, B, K]
        bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False)
        # [M, B, K] -> [M, B, K]
        repeats = []
        for r in range(R):
            blocks = []
            for x in range(X):
                dilation = 2**x
                padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2
                blocks += [
                    TemporalBlock(B,
                                  H,
                                  P,
                                  stride=1,
                                  padding=padding,
                                  dilation=dilation,
                                  norm_type=norm_type,
                                  causal=causal)
                ]
            repeats += [nn.Sequential(*blocks)]
        temporal_conv_net = nn.Sequential(*repeats)
        # [M, B, K] -> [M, C*N, K]
        mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False)
        # Put together
        self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net,
                                     mask_conv1x1)

    def forward(self, mixture_w):
        """
        Keep this API same with TasNet
        Args:
            mixture_w: [M, N, K], M is batch size
        returns:
            est_mask: [M, C, N, K]
        """
        M, N, K = mixture_w.size()
        score = self.network(mixture_w)  # [M, N, K] -> [M, C*N, K]
        score = score.view(M, self.C, N, K)  # [M, C*N, K] -> [M, C, N, K]
        if self.mask_nonlinear == 'softmax':
            est_mask = F.softmax(score, dim=1)
        elif self.mask_nonlinear == 'relu':
            est_mask = F.relu(score)
        else:
            raise ValueError("Unsupported mask non-linear function")
        return est_mask


class TemporalBlock(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation,
                 norm_type="gLN",
                 causal=False):
        super(TemporalBlock, self).__init__()
        # [M, B, K] -> [M, H, K]
        conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False)
        prelu = nn.PReLU()
        norm = chose_norm(norm_type, out_channels)
        # [M, H, K] -> [M, B, K]
        dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding,
                                        dilation, norm_type, causal)
        # Put together
        self.net = nn.Sequential(conv1x1, prelu, norm, dsconv)

    def forward(self, x):
        """
        Args:
            x: [M, B, K]
        Returns:
            [M, B, K]
        """
        residual = x
        out = self.net(x)
        # TODO: when P = 3 here works fine, but when P = 2 maybe need to pad?
        return out + residual  # look like w/o F.relu is better than w/ F.relu
        # return F.relu(out + residual)


class DepthwiseSeparableConv(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation,
                 norm_type="gLN",
                 causal=False):
        super(DepthwiseSeparableConv, self).__init__()
        # Use `groups` option to implement depthwise convolution
        # [M, H, K] -> [M, H, K]
        depthwise_conv = nn.Conv1d(in_channels,
                                   in_channels,
                                   kernel_size,
                                   stride=stride,
                                   padding=padding,
                                   dilation=dilation,
                                   groups=in_channels,
                                   bias=False)
        if causal:
            chomp = Chomp1d(padding)
        prelu = nn.PReLU()
        norm = chose_norm(norm_type, in_channels)
        # [M, H, K] -> [M, B, K]
        pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False)
        # Put together
        if causal:
            self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv)
        else:
            self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv)

    def forward(self, x):
        """
        Args:
            x: [M, H, K]
        Returns:
            result: [M, B, K]
        """
        return self.net(x)


class Chomp1d(nn.Module):
    """To ensure the output length is the same as the input.
    """
    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        """
        Args:
            x: [M, H, Kpad]
        Returns:
            [M, H, K]
        """
        return x[:, :, :-self.chomp_size].contiguous()


def chose_norm(norm_type, channel_size):
    """The input of normlization will be (M, C, K), where M is batch size,
       C is channel size and K is sequence length.
    """
    if norm_type == "gLN":
        return GlobalLayerNorm(channel_size)
    elif norm_type == "cLN":
        return ChannelwiseLayerNorm(channel_size)
    elif norm_type == "id":
        return nn.Identity()
    else:  # norm_type == "BN":
        # Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics
        # along M and K, so this BN usage is right.
        return nn.BatchNorm1d(channel_size)


# TODO: Use nn.LayerNorm to impl cLN to speed up
class ChannelwiseLayerNorm(nn.Module):
    """Channel-wise Layer Normalization (cLN)"""
    def __init__(self, channel_size):
        super(ChannelwiseLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1))  # [1, N, 1]
        self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1))  # [1, N, 1]
        self.reset_parameters()

    def reset_parameters(self):
        self.gamma.data.fill_(1)
        self.beta.data.zero_()

    def forward(self, y):
        """
        Args:
            y: [M, N, K], M is batch size, N is channel size, K is length
        Returns:
            cLN_y: [M, N, K]
        """
        mean = torch.mean(y, dim=1, keepdim=True)  # [M, 1, K]
        var = torch.var(y, dim=1, keepdim=True, unbiased=False)  # [M, 1, K]
        cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
        return cLN_y


class GlobalLayerNorm(nn.Module):
    """Global Layer Normalization (gLN)"""
    def __init__(self, channel_size):
        super(GlobalLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1))  # [1, N, 1]
        self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1))  # [1, N, 1]
        self.reset_parameters()

    def reset_parameters(self):
        self.gamma.data.fill_(1)
        self.beta.data.zero_()

    def forward(self, y):
        """
        Args:
            y: [M, N, K], M is batch size, N is channel size, K is length
        Returns:
            gLN_y: [M, N, K]
        """
        # TODO: in torch 1.0, torch.mean() support dim list
        mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)  # [M, 1, 1]
        var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
        gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
        return gLN_y


if __name__ == "__main__":
    torch.manual_seed(123)
    M, N, L, T = 2, 3, 4, 12
    K = 2 * T // L - 1
    B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False
    mixture = torch.randint(3, (M, T))
    # test Encoder
    encoder = Encoder(L, N)
    encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size())
    mixture_w = encoder(mixture)
    print('mixture', mixture)
    print('U', encoder.conv1d_U.weight)
    print('mixture_w', mixture_w)
    print('mixture_w size', mixture_w.size())

    # test TemporalConvNet
    separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal)
    est_mask = separator(mixture_w)
    print('est_mask', est_mask)

    # test Decoder
    decoder = Decoder(N, L)
    est_mask = torch.randint(2, (B, K, C, N))
    est_source = decoder(mixture_w, est_mask)
    print('est_source', est_source)

    # test Conv-TasNet
    conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type)
    est_source = conv_tasnet(mixture)
    print('est_source', est_source)
    print('est_source size', est_source.size())