Spaces:
AIMan2001
/
Runtime error

File size: 6,768 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import OrderedDict
import hashlib
import math
import json
from pathlib import Path

import julius
import torch as th
from torch import distributed
import torchaudio as ta
from torch.nn import functional as F

from .audio import convert_audio_channels
from .compressed import get_musdb_tracks

MIXTURE = "mixture"
EXT = ".wav"


def _track_metadata(track, sources):
    track_length = None
    track_samplerate = None
    for source in sources + [MIXTURE]:
        file = track / f"{source}{EXT}"
        info = ta.info(str(file))
        length = info.num_frames
        if track_length is None:
            track_length = length
            track_samplerate = info.sample_rate
        elif track_length != length:
            raise ValueError(
                f"Invalid length for file {file}: "
                f"expecting {track_length} but got {length}.")
        elif info.sample_rate != track_samplerate:
            raise ValueError(
                f"Invalid sample rate for file {file}: "
                f"expecting {track_samplerate} but got {info.sample_rate}.")
        if source == MIXTURE:
            wav, _ = ta.load(str(file))
            wav = wav.mean(0)
            mean = wav.mean().item()
            std = wav.std().item()

    return {"length": length, "mean": mean, "std": std, "samplerate": track_samplerate}


def _build_metadata(path, sources):
    meta = {}
    path = Path(path)
    for file in path.iterdir():
        meta[file.name] = _track_metadata(file, sources)
    return meta


class Wavset:
    def __init__(
            self,
            root, metadata, sources,
            length=None, stride=None, normalize=True,
            samplerate=44100, channels=2):
        """
        Waveset (or mp3 set for that matter). Can be used to train
        with arbitrary sources. Each track should be one folder inside of `path`.
        The folder should contain files named `{source}.{ext}`.
        Files will be grouped according to `sources` (each source is a list of
        filenames).

        Sample rate and channels will be converted on the fly.

        `length` is the sample size to extract (in samples, not duration).
        `stride` is how many samples to move by between each example.
        """
        self.root = Path(root)
        self.metadata = OrderedDict(metadata)
        self.length = length
        self.stride = stride or length
        self.normalize = normalize
        self.sources = sources
        self.channels = channels
        self.samplerate = samplerate
        self.num_examples = []
        for name, meta in self.metadata.items():
            track_length = int(self.samplerate * meta['length'] / meta['samplerate'])
            if length is None or track_length < length:
                examples = 1
            else:
                examples = int(math.ceil((track_length - self.length) / self.stride) + 1)
            self.num_examples.append(examples)

    def __len__(self):
        return sum(self.num_examples)

    def get_file(self, name, source):
        return self.root / name / f"{source}{EXT}"

    def __getitem__(self, index):
        for name, examples in zip(self.metadata, self.num_examples):
            if index >= examples:
                index -= examples
                continue
            meta = self.metadata[name]
            num_frames = -1
            offset = 0
            if self.length is not None:
                offset = int(math.ceil(
                    meta['samplerate'] * self.stride * index / self.samplerate))
                num_frames = int(math.ceil(
                    meta['samplerate'] * self.length / self.samplerate))
            wavs = []
            for source in self.sources:
                file = self.get_file(name, source)
                wav, _ = ta.load(str(file), frame_offset=offset, num_frames=num_frames)
                wav = convert_audio_channels(wav, self.channels)
                wavs.append(wav)

            example = th.stack(wavs)
            example = julius.resample_frac(example, meta['samplerate'], self.samplerate)
            if self.normalize:
                example = (example - meta['mean']) / meta['std']
            if self.length:
                example = example[..., :self.length]
                example = F.pad(example, (0, self.length - example.shape[-1]))
            return example


def get_wav_datasets(args, samples, sources):
    sig = hashlib.sha1(str(args.wav).encode()).hexdigest()[:8]
    metadata_file = args.metadata / (sig + ".json")
    train_path = args.wav / "train"
    valid_path = args.wav / "valid"
    if not metadata_file.is_file() and args.rank == 0:
        train = _build_metadata(train_path, sources)
        valid = _build_metadata(valid_path, sources)
        json.dump([train, valid], open(metadata_file, "w"))
    if args.world_size > 1:
        distributed.barrier()
    train, valid = json.load(open(metadata_file))
    train_set = Wavset(train_path, train, sources,
                       length=samples, stride=args.data_stride,
                       samplerate=args.samplerate, channels=args.audio_channels,
                       normalize=args.norm_wav)
    valid_set = Wavset(valid_path, valid, [MIXTURE] + sources,
                       samplerate=args.samplerate, channels=args.audio_channels,
                       normalize=args.norm_wav)
    return train_set, valid_set


def get_musdb_wav_datasets(args, samples, sources):
    metadata_file = args.metadata / "musdb_wav.json"
    root = args.musdb / "train"
    if not metadata_file.is_file() and args.rank == 0:
        metadata = _build_metadata(root, sources)
        json.dump(metadata, open(metadata_file, "w"))
    if args.world_size > 1:
        distributed.barrier()
    metadata = json.load(open(metadata_file))

    train_tracks = get_musdb_tracks(args.musdb, is_wav=True, subsets=["train"], split="train")
    metadata_train = {name: meta for name, meta in metadata.items() if name in train_tracks}
    metadata_valid = {name: meta for name, meta in metadata.items() if name not in train_tracks}
    train_set = Wavset(root, metadata_train, sources,
                       length=samples, stride=args.data_stride,
                       samplerate=args.samplerate, channels=args.audio_channels,
                       normalize=args.norm_wav)
    valid_set = Wavset(root, metadata_valid, [MIXTURE] + sources,
                       samplerate=args.samplerate, channels=args.audio_channels,
                       normalize=args.norm_wav)
    return train_set, valid_set