Spaces:
AIMan2001
/
Runtime error

File size: 10,775 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os
from pathlib import Path


def get_parser():
    parser = argparse.ArgumentParser("demucs", description="Train and evaluate Demucs.")
    default_raw = None
    default_musdb = None
    if 'DEMUCS_RAW' in os.environ:
        default_raw = Path(os.environ['DEMUCS_RAW'])
    if 'DEMUCS_MUSDB' in os.environ:
        default_musdb = Path(os.environ['DEMUCS_MUSDB'])
    parser.add_argument(
        "--raw",
        type=Path,
        default=default_raw,
        help="Path to raw audio, can be faster, see python3 -m demucs.raw to extract.")
    parser.add_argument("--no_raw", action="store_const", const=None, dest="raw")
    parser.add_argument("-m",
                        "--musdb",
                        type=Path,
                        default=default_musdb,
                        help="Path to musdb root")
    parser.add_argument("--is_wav", action="store_true",
                        help="Indicate that the MusDB dataset is in wav format (i.e. MusDB-HQ).")
    parser.add_argument("--metadata", type=Path, default=Path("metadata/"),
                        help="Folder where metadata information is stored.")
    parser.add_argument("--wav", type=Path,
                        help="Path to a wav dataset. This should contain a 'train' and a 'valid' "
                             "subfolder.")
    parser.add_argument("--samplerate", type=int, default=44100)
    parser.add_argument("--audio_channels", type=int, default=2)
    parser.add_argument("--samples",
                        default=44100 * 10,
                        type=int,
                        help="number of samples to feed in")
    parser.add_argument("--data_stride",
                        default=44100,
                        type=int,
                        help="Stride for chunks, shorter = longer epochs")
    parser.add_argument("-w", "--workers", default=10, type=int, help="Loader workers")
    parser.add_argument("--eval_workers", default=2, type=int, help="Final evaluation workers")
    parser.add_argument("-d",
                        "--device",
                        help="Device to train on, default is cuda if available else cpu")
    parser.add_argument("--eval_cpu", action="store_true", help="Eval on test will be run on cpu.")
    parser.add_argument("--dummy", help="Dummy parameter, useful to create a new checkpoint file")
    parser.add_argument("--test", help="Just run the test pipeline + one validation. "
                                       "This should be a filename relative to the models/ folder.")
    parser.add_argument("--test_pretrained", help="Just run the test pipeline + one validation, "
                                                  "on a pretrained model. ")

    parser.add_argument("--rank", default=0, type=int)
    parser.add_argument("--world_size", default=1, type=int)
    parser.add_argument("--master")

    parser.add_argument("--checkpoints",
                        type=Path,
                        default=Path("checkpoints"),
                        help="Folder where to store checkpoints etc")
    parser.add_argument("--evals",
                        type=Path,
                        default=Path("evals"),
                        help="Folder where to store evals and waveforms")
    parser.add_argument("--save",
                        action="store_true",
                        help="Save estimated for the test set waveforms")
    parser.add_argument("--logs",
                        type=Path,
                        default=Path("logs"),
                        help="Folder where to store logs")
    parser.add_argument("--models",
                        type=Path,
                        default=Path("models"),
                        help="Folder where to store trained models")
    parser.add_argument("-R",
                        "--restart",
                        action='store_true',
                        help='Restart training, ignoring previous run')

    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("-e", "--epochs", type=int, default=180, help="Number of epochs")
    parser.add_argument("-r",
                        "--repeat",
                        type=int,
                        default=2,
                        help="Repeat the train set, longer epochs")
    parser.add_argument("-b", "--batch_size", type=int, default=64)
    parser.add_argument("--lr", type=float, default=3e-4)
    parser.add_argument("--mse", action="store_true", help="Use MSE instead of L1")
    parser.add_argument("--init", help="Initialize from a pre-trained model.")

    # Augmentation options
    parser.add_argument("--no_augment",
                        action="store_false",
                        dest="augment",
                        default=True,
                        help="No basic data augmentation.")
    parser.add_argument("--repitch", type=float, default=0.2,
                        help="Probability to do tempo/pitch change")
    parser.add_argument("--max_tempo", type=float, default=12,
                        help="Maximum relative tempo change in %% when using repitch.")

    parser.add_argument("--remix_group_size",
                        type=int,
                        default=4,
                        help="Shuffle sources using group of this size. Useful to somewhat "
                        "replicate multi-gpu training "
                        "on less GPUs.")
    parser.add_argument("--shifts",
                        type=int,
                        default=10,
                        help="Number of random shifts used for the shift trick.")
    parser.add_argument("--overlap",
                        type=float,
                        default=0.25,
                        help="Overlap when --split_valid is passed.")

    # See model.py for doc
    parser.add_argument("--growth",
                        type=float,
                        default=2.,
                        help="Number of channels between two layers will increase by this factor")
    parser.add_argument("--depth",
                        type=int,
                        default=6,
                        help="Number of layers for the encoder and decoder")
    parser.add_argument("--lstm_layers", type=int, default=2, help="Number of layers for the LSTM")
    parser.add_argument("--channels",
                        type=int,
                        default=64,
                        help="Number of channels for the first encoder layer")
    parser.add_argument("--kernel_size",
                        type=int,
                        default=8,
                        help="Kernel size for the (transposed) convolutions")
    parser.add_argument("--conv_stride",
                        type=int,
                        default=4,
                        help="Stride for the (transposed) convolutions")
    parser.add_argument("--context",
                        type=int,
                        default=3,
                        help="Context size for the decoder convolutions "
                        "before the transposed convolutions")
    parser.add_argument("--rescale",
                        type=float,
                        default=0.1,
                        help="Initial weight rescale reference")
    parser.add_argument("--no_resample", action="store_false",
                        default=True, dest="resample",
                        help="No Resampling of the input/output x2")
    parser.add_argument("--no_glu",
                        action="store_false",
                        default=True,
                        dest="glu",
                        help="Replace all GLUs by ReLUs")
    parser.add_argument("--no_rewrite",
                        action="store_false",
                        default=True,
                        dest="rewrite",
                        help="No 1x1 rewrite convolutions")
    parser.add_argument("--normalize", action="store_true")
    parser.add_argument("--no_norm_wav", action="store_false", dest='norm_wav', default=True)

    # Tasnet options
    parser.add_argument("--tasnet", action="store_true")
    parser.add_argument("--split_valid",
                        action="store_true",
                        help="Predict chunks by chunks for valid and test. Required for tasnet")
    parser.add_argument("--X", type=int, default=8)

    # Other options
    parser.add_argument("--show",
                        action="store_true",
                        help="Show model architecture, size and exit")
    parser.add_argument("--save_model", action="store_true",
                        help="Skip traning, just save final model "
                             "for the current checkpoint value.")
    parser.add_argument("--save_state",
                        help="Skip training, just save state "
                             "for the current checkpoint value. You should "
                             "provide a model name as argument.")

    # Quantization options
    parser.add_argument("--q-min-size", type=float, default=1,
                        help="Only quantize layers over this size (in MB)")
    parser.add_argument(
        "--qat", type=int, help="If provided, use QAT training with that many bits.")

    parser.add_argument("--diffq", type=float, default=0)
    parser.add_argument(
        "--ms-target", type=float, default=162,
        help="Model size target in MB, when using DiffQ. Best model will be kept "
             "only if it is smaller than this target.")

    return parser


def get_name(parser, args):
    """
    Return the name of an experiment given the args. Some parameters are ignored,
    for instance --workers, as they do not impact the final result.
    """
    ignore_args = set([
        "checkpoints",
        "deterministic",
        "eval",
        "evals",
        "eval_cpu",
        "eval_workers",
        "logs",
        "master",
        "rank",
        "restart",
        "save",
        "save_model",
        "save_state",
        "show",
        "workers",
        "world_size",
    ])
    parts = []
    name_args = dict(args.__dict__)
    for name, value in name_args.items():
        if name in ignore_args:
            continue
        if value != parser.get_default(name):
            if isinstance(value, Path):
                parts.append(f"{name}={value.name}")
            else:
                parts.append(f"{name}={value}")
    if parts:
        name = " ".join(parts)
    else:
        name = "default"
    return name