File size: 21,442 Bytes
2de5878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb15f9
2de5878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb15f9
2de5878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb15f9
 
 
 
 
2de5878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import glob
import tempfile
from decimal import Decimal
from pathlib import Path
from typing import List, Dict, Any

import gradio as gr
from PIL import Image
import open_clip
import torch
import os
import pandas as pd
import numpy as np
from gradio import processing_utils, utils

from download_example_images import read_actor_files, save_images_to_folder

DEFAULT_INITIAL_NAME = "John Doe"
PROMPTS = [
    '{0}',
    'an image of {0}',
    'a photo of {0}',
    '{0} on a photo',
    'a photo of a person named {0}',
    'a person named {0}',
    'a man named {0}',
    'a woman named {0}',
    'the name of the person is {0}',
    'a photo of a person with the name {0}',
    '{0} at a gala',
    'a photo of the celebrity {0}',
    'actor {0}',
    'actress {0}',
    'a colored photo of {0}',
    'a black and white photo of {0}',
    'a cool photo of {0}',
    'a cropped photo of {0}',
    'a cropped image of {0}',
    '{0} in a suit',
    '{0} in a dress'
]
OPEN_CLIP_MODEL_NAMES = ['ViT-B-32', 'ViT-B-16', 'ViT-L-14']
NUM_TOTAL_NAMES = 1_000
SEED = 42
MIN_NUM_CORRECT_PROMPT_PREDS = 1
EDAMPLE_IMAGE_DIR = './example_images/'
IMG_BATCHSIZE = 16

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

EXAMPLE_IMAGE_URLS = read_actor_files(EDAMPLE_IMAGE_DIR)
save_images_to_folder(os.path.join(EDAMPLE_IMAGE_DIR, 'images'), EXAMPLE_IMAGE_URLS)

MODELS = {}
for model_name in OPEN_CLIP_MODEL_NAMES:
    dataset = 'LAION400M'
    model, _, preprocess = open_clip.create_model_and_transforms(
        model_name,
        pretrained=f'{dataset.lower()}_e32'
    )
    model = model.eval()
    MODELS[f'OpenClip {model_name} trained on {dataset}'] = {
        'model_instance': model,
        'preprocessing': preprocess,
        'model_name': model_name,
        'prompt_text_embeddings': torch.load(f'./prompt_text_embeddings/{model_name}_prompt_text_embeddings.pt')
    }

FULL_NAMES_DF = pd.read_csv('full_names.csv', index_col=0)
LAION_MEMBERSHIP_OCCURENCE = pd.read_csv('laion_membership_occurence_count.csv', index_col=0)

EXAMPLE_ACTORS_BY_MODEL = {
    "ViT-B-32": ["T._J._Thyne"],
    "ViT-B-16": ["Barbara_Schöneberger", "Carolin_Kebekus"],
    "ViT-L-14": ["Max_Giermann", "Nicole_De_Boer"]
}

EXAMPLES = []
for model_name, person_names in EXAMPLE_ACTORS_BY_MODEL.items():
    for name in person_names:
        image_folder = os.path.join("./example_images/images/", name)
        for dd_model_name in MODELS.keys():
            if model_name not in dd_model_name:
                continue

            EXAMPLES.append([
                dd_model_name,
                name.replace("_", " "),
                [[x.format(name.replace("_", " ")) for x in PROMPTS]],
                [os.path.join(image_folder, x) for x in os.listdir(image_folder)]
            ])

LICENSE_DETAILS = """
See [README.md](https://huggingface.co/spaces/AIML-TUDA/does-clip-know-my-face/blob/main/README.md) for more information about the licenses of the example images.
"""

CORRECT_RESULT_INTERPRETATION = """<br>
<h2>{0} is in the Training Data!</h2>
The name of {0} has been <b>correctly predicted for {1} out of {2} prompts.</b> This means that <b>{0} was in 
the training data and was used to train the model.</b>
Keep in mind that the probability of correctly predicting the name for {3} by chance {4} times with {5} possible names for the model to 
choose from, is only (<sup>1</sup> &#8260; <sub>{5}</sub>)<sup>{6}</sup> = {7}%.
"""

INDECISIVE_RESULT_INTERPRETATION = """<br>
<h2>{0} might be in the Training Data!</h2>
For none of the {1} prompts the majority vote for the name of {0} was correct. However, while the majority votes are not
correct, the name of {0} was correctly predicted {2} times for {3}. This is an indication that the model has seen {0} 
during training. A different selection of images might have a clearer result. Keep in mind that the probability 
that the name is correctly predicted by chance {2} times for {3} is 
(<sup>1</sup> &#8260; <sub>{4}</sub>)<sup>{2}</sup> = {5}%. 
"""

INCORRECT_RESULT_INTERPRETATION = """<br>
<h2>{0} is most likely not in the Training Data!</h2>
The name of {0} has not been correctly predicted for any of the {1} prompts. This is an indication that {0} has 
most likely not been used for training the model.
"""

OCCURENCE_INFORMATION = """<br><br>
According to our analysis {0} appeared {1} times among 400 million image-text pairs in the LAION-400M training dataset. 
"""

CSS = """
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        #file_upload {
            max-height: 250px;
            overflow-y: auto !important;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""


# monkey patch the update function of the Files component since otherwise it is not possible to access the original
# file name
def preprocess(
        self, x: List[Dict[str, Any]] | None
) -> bytes | tempfile._TemporaryFileWrapper | List[
    bytes | tempfile._TemporaryFileWrapper
    ] | None:
    """
    Parameters:
        x: List of JSON objects with filename as 'name' property and base64 data as 'data' property
    Returns:
        File objects in requested format
    """
    if x is None:
        return None

    def process_single_file(f) -> bytes | tempfile._TemporaryFileWrapper:
        file_name, orig_name, data, is_file = (
            f["name"] if "name" in f.keys() else f["orig_name"],
            f["orig_name"] if "orig_name" in f.keys() else f["name"],
            f["data"],
            f.get("is_file", False),
        )
        if self.type == "file":
            if is_file:
                temp_file_path = self.make_temp_copy_if_needed(file_name)
                file = tempfile.NamedTemporaryFile(delete=False)
                file.name = temp_file_path
                file.orig_name = os.path.basename(orig_name.replace(self.hash_file(file_name), ""))  # type: ignore
            else:
                file = processing_utils.decode_base64_to_file(
                    data, file_path=file_name
                )
                file.orig_name = file_name  # type: ignore
                self.temp_files.add(str(utils.abspath(file.name)))
            return file
        elif (
                self.type == "binary" or self.type == "bytes"
        ):  # "bytes" is included for backwards compatibility
            if is_file:
                with open(file_name, "rb") as file_data:
                    return file_data.read()
            return processing_utils.decode_base64_to_binary(data)[0]
        else:
            raise ValueError(
                "Unknown type: "
                + str(self.type)
                + ". Please choose from: 'file', 'bytes'."
            )

    if self.file_count == "single":
        if isinstance(x, list):
            return process_single_file(x[0])
        else:
            return process_single_file(x)
    else:
        if isinstance(x, list):
            return [process_single_file(f) for f in x]
        else:
            return process_single_file(x)


gr.Files.preprocess = preprocess


@torch.no_grad()
def calculate_text_embeddings(model_name, prompts):
    tokenizer = open_clip.get_tokenizer(MODELS[model_name]['model_name'])
    context_vecs = open_clip.tokenize(prompts)

    model_instance = MODELS[model_name]['model_instance']

    model_instance = model_instance.to(DEVICE)
    context_vecs = context_vecs.to(DEVICE)

    text_features = model_instance.encode_text(context_vecs, normalize=True).cpu()

    model_instance = model_instance.cpu()
    context_vecs = context_vecs.cpu()

    return text_features


@torch.no_grad()
def calculate_image_embeddings(model_name, images):
    preprocessing = MODELS[model_name]['preprocessing']
    model_instance = MODELS[model_name]['model_instance']

    # load the given images
    user_imgs = []
    for tmp_file_img in images:
        img = Image.open(tmp_file_img.name)
        # preprocess the images
        user_imgs.append(preprocessing(img))

    # calculate the image embeddings
    image_embeddings = []
    model_instance = model_instance.to(DEVICE)
    for batch_idx in range(0, len(user_imgs), IMG_BATCHSIZE):
        imgs = user_imgs[batch_idx:batch_idx + IMG_BATCHSIZE]
        imgs = torch.stack(imgs)
        imgs = imgs.to(DEVICE)

        emb = model_instance.encode_image(imgs, normalize=True).cpu()
        image_embeddings.append(emb)

        imgs = imgs.cpu()
    model_instance = model_instance.cpu()

    return torch.cat(image_embeddings)


def get_possible_names(true_name):
    possible_names = FULL_NAMES_DF
    possible_names['full_names'] = FULL_NAMES_DF['first_name'].astype(str) + ' ' + FULL_NAMES_DF['last_name'].astype(
        str)

    possible_names = possible_names[possible_names['full_names'] != true_name]

    # sample the same amount of male and female names
    sampled_names = possible_names.groupby('sex').sample(int(NUM_TOTAL_NAMES / 2), random_state=42)
    # shuffle the rows randomly
    sampled_names = sampled_names.sample(frac=1)
    # get only the full names since we don't need first and last name and gender anymore
    possible_full_names = sampled_names['full_names']

    return possible_full_names


def round_to_first_digit(value: Decimal):
    tmp = np.format_float_positional(value)

    prob_str = []
    for c in str(tmp):
        if c in ("0", "."):
            prob_str.append(c)
        else:
            prob_str.append(c)
            break

    return "".join(prob_str)


def get_majority_predictions(predictions: pd.Series, values_only=False, counts_only=False, value=None):
    """Takes a series of predictions and returns the unique values and the number of prediction occurrences
    in descending order."""
    values, counts = np.unique(predictions, return_counts=True)
    descending_counts_indices = counts.argsort()[::-1]
    values, counts = values[descending_counts_indices], counts[descending_counts_indices]

    idx_most_often_pred_names = np.argwhere(counts == counts.max()).flatten()

    if values_only:
        return values[idx_most_often_pred_names]
    elif counts_only:
        return counts[idx_most_often_pred_names]
    elif value is not None:
        if value not in values:
            return [0]
        # return how often the values appears in the predictions
        return counts[np.where(values == value)[0]]
    else:
        return values[idx_most_often_pred_names], counts[idx_most_often_pred_names]


def on_submit_btn_click(model_name, true_name, prompts, images):
    # assert that the name is in the prompts
    assert prompts.iloc[0].str.contains(true_name).sum() == len(prompts.T)

    # calculate the image embeddings
    img_embeddings = calculate_image_embeddings(model_name, images)

    # calculate the text embeddings of the populated prompts
    user_text_emb = calculate_text_embeddings(model_name, prompts.values[0].tolist())

    # get the indices of the possible names
    possible_names = get_possible_names(true_name)
    # get the text embeddings of the possible names
    prompt_text_embeddings = MODELS[model_name]['prompt_text_embeddings']
    text_embeddings_used_for_prediction = prompt_text_embeddings.index_select(1,
                                                                              torch.tensor(possible_names.index.values))

    # add the true name and the text embeddings to the possible names
    names_used_for_prediction = pd.concat([possible_names, pd.Series(true_name)], ignore_index=True)
    text_embeddings_used_for_prediction = torch.cat([text_embeddings_used_for_prediction, user_text_emb.unsqueeze(1)],
                                                    dim=1)

    # calculate the similarity of the images and the given texts
    with torch.no_grad():
        logits_per_image = MODELS[model_name][
                               'model_instance'
                           ].logit_scale.exp().cpu() * img_embeddings @ text_embeddings_used_for_prediction.swapaxes(-1, -2)
        preds = logits_per_image.argmax(-1)

    # get the predicted names for each prompt
    predicted_names = []
    for pred in preds:
        predicted_names.append(names_used_for_prediction.iloc[pred])
    predicted_names = np.array(predicted_names)

    # convert the predictions into a dataframe
    name_predictions = pd.DataFrame(predicted_names).T.reset_index().rename(
        columns={i: f'Prompt {i + 1}' for i in range(len(predicted_names))}
    ).rename(columns={'index': 'Image'})
    # add the image names
    name_predictions['Image'] = [x.orig_name for x in images]

    # get the majority votes
    majority_preds = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
        lambda x: get_majority_predictions(x, values_only=True)
    )
    # get how often the majority name was predicted
    majority_preds_counts = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
        lambda x: get_majority_predictions(x, counts_only=True)
    ).apply(lambda x: x[0])
    # get how often the correct name was predicted - even if no majority
    true_name_preds_counts = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
        lambda x: get_majority_predictions(x, value=true_name)
    ).apply(lambda x: x[0])

    # convert the majority preds to a series of lists if it is a dataframe
    majority_preds = majority_preds.T.squeeze().apply(lambda x: [x]) if len(majority_preds) == 1 else majority_preds

    # create the results dataframe for display
    result = pd.concat(
        [name_predictions,
         pd.concat([pd.Series({'Image': 'Correct Name Predictions'}), true_name_preds_counts]).to_frame().T],
        ignore_index=True
    )
    result = pd.concat(
        [result, pd.concat([pd.Series({'Image': 'Majority Vote'}), majority_preds]).to_frame().T],
        ignore_index=True
    )
    result = pd.concat(
        [result, pd.concat([pd.Series({'Image': 'Majority Vote Counts'}), majority_preds_counts]).to_frame().T],
        ignore_index=True
    )
    result = result.set_index('Image')

    # check whether there is only one majority vote. If not, display Not Applicable
    result.loc['Majority Vote'] = result.loc['Majority Vote'].apply(
        lambda x: x[0] if len(x) == 1 else "N/A")

    # check whether the majority prediction is the correct name
    result.loc['Correct Majority Prediction'] = result.apply(lambda x: x['Majority Vote'] == true_name, axis=0)

    result = result[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].sort_values(
        ['Correct Name Predictions', 'Majority Vote Counts', "Correct Majority Prediction"], axis=1, ascending=False
    )

    predictions = result.loc[[x.orig_name for x in images]]
    prediction_results = result.loc[['Correct Name Predictions', 'Majority Vote', 'Correct Majority Prediction']]

    # if there are correct predictions
    num_correct_maj_preds = prediction_results.loc['Correct Majority Prediction'].sum()
    num_correct_name_preds = result.loc['Correct Name Predictions'].max()
    if num_correct_maj_preds > 0:
        interpretation = CORRECT_RESULT_INTERPRETATION.format(
            true_name,
            num_correct_maj_preds,
            len(PROMPTS),
            prediction_results.columns[0],
            len(images),
            len(possible_names),
            predictions.iloc[:, 0].value_counts()[true_name],
            round_to_first_digit(
                (
                        (Decimal(1) / Decimal(len(possible_names))) ** predictions.iloc[:, 0].value_counts()[true_name]
                ) * Decimal(100)
            )
        )
    elif num_correct_name_preds > 0:
        interpretation = INDECISIVE_RESULT_INTERPRETATION.format(
            true_name,
            len(PROMPTS),
            num_correct_name_preds,
            prediction_results.columns[result.loc['Correct Name Predictions'].to_numpy().argmax()],
            len(possible_names),
            round_to_first_digit(
                (
                        (Decimal(1) / Decimal(len(possible_names))) ** Decimal(num_correct_name_preds)
                ) * Decimal(100)
            )
        )
    else:
        interpretation = INCORRECT_RESULT_INTERPRETATION.format(
            true_name,
            len(PROMPTS)
        )

    if true_name.lower() in LAION_MEMBERSHIP_OCCURENCE['name'].str.lower().values:
        row = LAION_MEMBERSHIP_OCCURENCE[LAION_MEMBERSHIP_OCCURENCE['name'].str.lower() == true_name.lower()]
        interpretation = interpretation + OCCURENCE_INFORMATION.format(true_name, row['count'].values[0])

    return predictions.reset_index(), prediction_results.reset_index(names=[""]), interpretation


def populate_prompts(name):
    return [[x.format(name) for x in PROMPTS]]


def load_uploaded_imgs(images):
    if images is None:
        return None

    imgs = []
    for file_wrapper in images:
        img = Image.open(file_wrapper.name)
        imgs.append((img, file_wrapper.orig_name))

    return imgs


block = gr.Blocks(css=CSS)
with block as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 750px; margin: 0 auto;">
            <div>
                <img 
                    class="logo" 
                    src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1666181274838-62fa1d95e8c9c532aa75331c.png" 
                    alt="AIML Logo"
                    style="margin: auto; max-width: 7rem;"
                >
                <h1 style="font-weight: 900; font-size: 3rem;">
                    Does CLIP Know My Face?
                </h1>
            </div>
            <p style="margin-bottom: 10px; font-size: 94%">
            Want to know whether you were used to train a CLIP model? Below you can choose a model, enter your name and upload some pictures.
            If the model correctly predicts your name for multiple images, it is very likely that you were part of the training data.
            Pick some of the examples below and try it out!<br><br>
            Details and further analysis can be found in the paper 
            <a href="https://arxiv.org/abs/2209.07341" style="text-decoration: underline;" target="_blank">
                Does CLIP Know My Face?
            </a>. Our code can be found at 
            <a href="https://github.com/D0miH/does-clip-know-my-face" style="text-decoration: underline;" target="_blank">
                GitHub
            </a>
          </p>.
        </div>
        """
    )

    with gr.Row():
        with gr.Box():
            gr.Markdown("## Inputs")
            with gr.Column():
                model_dd = gr.Dropdown(label="CLIP Model", choices=list(MODELS.keys()),
                                       value=list(MODELS.keys())[0])
                true_name = gr.Textbox(label='Name of Person:', lines=1, value=DEFAULT_INITIAL_NAME)
                prompts = gr.Dataframe(
                    value=[[x.format(DEFAULT_INITIAL_NAME) for x in PROMPTS]],
                    label='Prompts Used (hold shift to scroll sideways):',
                    interactive=False
                )

                true_name.change(fn=populate_prompts, inputs=[true_name], outputs=prompts, show_progress=True,
                                 status_tracker=None)

                uploaded_imgs = gr.Files(label='Upload Images:', file_types=['image'], elem_id='file_upload').style()
                image_gallery = gr.Gallery(label='Images Used:', show_label=True, elem_id="image_gallery").style(grid=[5])

                uploaded_imgs.change(load_uploaded_imgs, inputs=uploaded_imgs, outputs=image_gallery)
                submit_btn = gr.Button(value='Submit')

        with gr.Box():
            gr.Markdown("## Outputs")
            prediction_df = gr.Dataframe(label="Prediction Output (hold shift to scroll sideways):", interactive=False)
            result_df = gr.DataFrame(label="Result (hold shift to scroll sideways):", interactive=False)
            interpretation = gr.HTML()

        submit_btn.click(on_submit_btn_click, inputs=[model_dd, true_name, prompts, uploaded_imgs],
                         outputs=[prediction_df, result_df, interpretation])

    gr.Examples(
        examples=EXAMPLES,
        inputs=[model_dd, true_name, prompts, uploaded_imgs],
        outputs=[prediction_df, result_df, interpretation],
        fn=on_submit_btn_click,
        cache_examples=True
    )

    gr.Markdown(LICENSE_DETAILS)

    gr.HTML(
        """
            <div class="footer">
                <p> Gradio Demo by AIML@TU Darmstadt</p>
            </div>
            <div class="acknowledgments">                    
                <p>Created by <a href="https://www.ml.informatik.tu-darmstadt.de/people/dhintersdorf/">Dominik Hintersdorf</a> at <a href="https://www.aiml.informatik.tu-darmstadt.de">AIML Lab</a>.</p>
           </div>
       """
    )

if __name__ == "__main__":
    demo.launch()