Spaces:
Sleeping
Sleeping
File size: 11,271 Bytes
200818a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from cldm.ddim_hacked import DDIMSampler
import math
from omegaconf import OmegaConf
from scripts.rendertext_tool import Render_Text, load_model_from_config
import gradio as gr
import os
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt):
rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]
width_values = [width_0, width_1, width_2, width_3]
ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]
top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]
top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]
yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]
num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]
return render_tool.process_multi(rendered_txt_values, shared_prompt,
width_values, ratio_values,
top_left_x_values, top_left_y_values,
yaw_values, num_rows_values,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt
)
def process_multi_wrapper_only_show_rendered(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt):
rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]
width_values = [width_0, width_1, width_2, width_3]
ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]
top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]
top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]
yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]
num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]
return render_tool.process_multi(rendered_txt_values, shared_prompt,
width_values, ratio_values,
top_left_x_values, top_left_y_values,
yaw_values, num_rows_values,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt,
only_show_rendered_image=True)
cfg = OmegaConf.load("config.yaml")
model = load_model_from_config(cfg, "model_wo_ema.ckpt", verbose=True)
# model = load_model_from_config(cfg, "model_states.pt", verbose=True)
# model = load_model_from_config(cfg, "model.ckpt", verbose=True)
ddim_sampler = DDIMSampler(model)
render_tool = Render_Text(model)
# description = """
# # <center>Expedit-SAM (Expedite Segment Anything Model without any training)</center>
# Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM)
# You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box.
# Points per side is a hyper-parameter that controls the number of points used to generate the segmentation masks. The higher the number, the more accurate the segmentation masks will be, but the slower the inference speed will be. The default value is 12.
# """
description = """
## Control Stable Diffusion with Glyph Images
"""
SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
# description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. < a href=" ">< img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></ a></p >'
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(description)
only_show_rendered_image = gr.Number(value=1, visible=False)
with gr.Column():
with gr.Row():
for i in range(4):
with gr.Column():
exec(f"""rendered_txt_{i} = gr.Textbox(label=f"Render Text {i+1}")""")
with gr.Accordion(f"Advanced options {i+1}", open=False):
exec(f"""width_{i} = gr.Slider(label="Bbox Width", minimum=0., maximum=1, value=0.3, step=0.01) """)
exec(f"""ratio_{i} = gr.Slider(label="Bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02, visible=False) """)
exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={0.35 - 0.25 * math.cos(math.pi * i)}, step=0.01) """)
exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={0.1 if i < 2 else 0.6}, step=0.01) """)
exec(f"""yaw_{i} = gr.Slider(label="Bbox Yaw", minimum=-180, maximum=180, value=0, step=5) """)
# exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1, visible=False) """)
exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1) """)
with gr.Row():
with gr.Column():
shared_prompt = gr.Textbox(label="Shared Prompt")
with gr.Row():
run_button = gr.Button(value="Run")
show_render_button = gr.Button(value="Only Rendered")
with gr.Accordion("Shared Advanced options", open=False):
with gr.Row():
shared_num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
shared_image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64, visible=False)
shared_strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01, visible=False)
shared_guess_mode = gr.Checkbox(label='Guess Mode', value=False, visible=False)
shared_seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
with gr.Row():
shared_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
shared_ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
shared_eta = gr.Number(label="eta (DDIM)", value=0.0, visible=False)
with gr.Row():
shared_a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
shared_n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Row():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
run_button.click(fn=process_multi_wrapper,
inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt],
outputs=[result_gallery])
show_render_button.click(fn=process_multi_wrapper_only_show_rendered,
inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt],
outputs=[result_gallery])
block.launch() |