File size: 6,634 Bytes
6efc863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""

    Based on https://github.com/CompVis/taming-transformers/blob/52720829/taming/modules/losses/lpips.py

    Adapted for spectrograms by Vladimir Iashin (v-iashin)

"""
from collections import namedtuple

import numpy as np
import torch
import torch.nn as nn

import sys
sys.path.insert(0, '.')  # nopep8
# from ldm.modules.losses_audio.vggishish.model import VGGishish
from ldm.util import get_ckpt_path


class LPAPS(nn.Module):# this model is trained on 80melbins22050hz mel
    # Learned perceptual metric
    def __init__(self, use_dropout=True):
        super().__init__()
        self.scaling_layer = ScalingLayer()
        self.chns = [64, 128, 256, 512, 512]  # vggish16 features
        self.net = vggishish16(pretrained=True, requires_grad=False)
        self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
        self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
        self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
        self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
        self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
        self.load_from_pretrained()
        for param in self.parameters():
            param.requires_grad = False

    def load_from_pretrained(self, name="vggishish_lpaps"):
        ckpt = get_ckpt_path(name, "ldm/modules/autoencoder/lpaps")
        self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        print("loaded pretrained LPAPS loss from {}".format(ckpt))

    @classmethod
    def from_pretrained(cls, name="vggishish_lpaps"):
        if name != "vggishish_lpaps":
            raise NotImplementedError
        model = cls()
        ckpt = get_ckpt_path(name)
        model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        return model

    def forward(self, input, target):
        in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}
        lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
        for kk in range(len(self.chns)):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
        val = res[0]
        for l in range(1, len(self.chns)):
            val += res[l]
        return val

class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        # we are gonna use get_ckpt_path to donwload the stats as well
        stat_path = get_ckpt_path('vggishish_mean_std_melspec_10s_22050hz', 'ldm/modules/autoencoder/lpaps')
        # if for images we normalize on the channel dim, in spectrogram we will norm on frequency dimension
        means, stds = np.loadtxt(stat_path, dtype=np.float32).T
        # the normalization in means and stds are given for [0, 1], but specvqgan expects [-1, 1]:
        means = 2 * means - 1
        stds = 2 * stds
        # input is expected to be (B, 1, F, T)
        self.register_buffer('shift', torch.from_numpy(means)[None, None, :, None])
        self.register_buffer('scale', torch.from_numpy(stds)[None, None, :, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    """ A single linear layer which does a 1x1 conv """
    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()
        layers = [nn.Dropout(), ] if (use_dropout) else []
        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
        self.model = nn.Sequential(*layers)

class vggishish16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super().__init__()
        vgg_pretrained_features = self.vggishish16(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
        return out

    def vggishish16(self, pretrained: bool = True) -> VGGishish:
        # loading vggishish pretrained on vggsound
        num_classes_vggsound = 309
        conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
        model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes_vggsound)
        if pretrained:
            ckpt_path = get_ckpt_path('vggishish_lpaps', "ldm/modules/autoencoder/lpaps")
            ckpt = torch.load(ckpt_path, map_location=torch.device("cpu"))
            model.load_state_dict(ckpt, strict=False)
        return model

def normalize_tensor(x, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
    return x / (norm_factor+eps)

def spatial_average(x, keepdim=True):
    return x.mean([2, 3], keepdim=keepdim)


if __name__ == '__main__':
    inputs = torch.rand((16, 1, 80, 848))
    reconstructions = torch.rand((16, 1, 80, 848))
    lpips = LPAPS().eval()
    loss_p = lpips(inputs.contiguous(), reconstructions.contiguous())
    # (16, 1, 1, 1)
    print(loss_p.shape)