File size: 24,949 Bytes
6efc863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""SAMPLING ONLY."""

import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from typing import List, Optional, Tuple, Union
from ldm.util import randn_tensor
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
    extract_into_tensor


class LCMSampler(object):
    def __init__(self, model, **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.original_inference_steps = 100
        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, self.ddpm_num_timesteps)[::-1].copy().astype(np.int64))
        self.custom_timesteps = False
        self.timestep_scaling = 10.0
        self.prediction_type = 'epsilon'


    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

    def make_schedule(self, ddim_discretize="uniform", verbose=True):
        # self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
        #                                           num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
        # alphas_cumprod = self.model.alphas_cumprod
        # assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        # beta_start = 0.00085
        # beta_end = 0.012
        # self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, self.ddpm_num_timesteps, dtype=torch.float32) ** 2
        # self.alphas = 1.0 - self.betas
        # self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        alphas_cumprod = self.model.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
        self.register_buffer('betas', to_torch(self.model.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))

        # # calculations for diffusion q(x_t | x_{t-1}) and others
        # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        # self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        # self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        # self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        

        # # ddim sampling parameters
        # ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
        #                                                                            ddim_timesteps=self.ddim_timesteps,
        #                                                                            eta=ddim_eta,verbose=verbose)
        # self.register_buffer('ddim_sigmas', ddim_sigmas)
        # self.register_buffer('ddim_alphas', ddim_alphas)
        # self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        # self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        # sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
        #     (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
        #                 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        # self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")
        
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """

        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298



        Args:

            timesteps (`torch.Tensor`):

                generate embedding vectors at these timesteps

            embedding_dim (`int`, *optional*, defaults to 512):

                dimension of the embeddings to generate

            dtype:

                data type of the generated embeddings



        Returns:

            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`

        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def step_index(self):
        return self._step_index

    def set_timesteps(

        self,

        num_inference_steps: Optional[int] = None,

        device: Union[str, torch.device] = None,

        original_inference_steps: Optional[int] = None,

        timesteps: Optional[List[int]] = None,

        strength: int = 1.0,

    ):
        """

        Sets the discrete timesteps used for the diffusion chain (to be run before inference).



        Args:

            num_inference_steps (`int`, *optional*):

                The number of diffusion steps used when generating samples with a pre-trained model. If used,

                `timesteps` must be `None`.

            device (`str` or `torch.device`, *optional*):

                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

            original_inference_steps (`int`, *optional*):

                The original number of inference steps, which will be used to generate a linearly-spaced timestep

                schedule (which is different from the standard `diffusers` implementation). We will then take

                `num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as

                our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.

            timesteps (`List[int]`, *optional*):

                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default

                timestep spacing strategy of equal spacing between timesteps on the training/distillation timestep

                schedule is used. If `timesteps` is passed, `num_inference_steps` must be `None`.

        """
        # 0. Check inputs
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")

        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        # 1. Calculate the LCM original training/distillation timestep schedule.
        original_steps = (
            original_inference_steps if original_inference_steps is not None else self.original_inference_steps
        )

        if original_steps > self.ddpm_num_timesteps:
            raise ValueError(
                f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.ddpm_num_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.ddpm_num_timesteps} timesteps."
            )
        # import ipdb
        # ipdb.set_trace()
        # LCM Timesteps Setting
        # The skipping step parameter k from the paper.
        k = self.ddpm_num_timesteps // original_steps
        # LCM Training/Distillation Steps Schedule
        # Currently, only a linearly-spaced schedule is supported (same as in the LCM distillation scripts).
        lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1

        # 2. Calculate the LCM inference timestep schedule.
        if timesteps is not None:
            # 2.1 Handle custom timestep schedules.
            train_timesteps = set(lcm_origin_timesteps)
            non_train_timesteps = []
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

                if timesteps[i] not in train_timesteps:
                    non_train_timesteps.append(timesteps[i])

            if timesteps[0] >= self.ddpm_num_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.ddpm_num_timesteps}."
                )

            # Raise warning if timestep schedule does not start with self.config.num_train_timesteps - 1
            if strength == 1.0 and timesteps[0] != self.ddpm_num_timesteps - 1:
                logger.warning(
                    f"The first timestep on the custom timestep schedule is {timesteps[0]}, not"
                    f" `self.ddpm_num_timesteps - 1`: {self.ddpm_num_timesteps - 1}. You may get"
                    f" unexpected results when using this timestep schedule."
                )

            # Raise warning if custom timestep schedule contains timesteps not on original timestep schedule
            if non_train_timesteps:
                logger.warning(
                    f"The custom timestep schedule contains the following timesteps which are not on the original"
                    f" training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results"
                    f" when using this timestep schedule."
                )

            # Raise warning if custom timestep schedule is longer than original_steps
            if len(timesteps) > original_steps:
                logger.warning(
                    f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
                    f" the length of the timestep schedule used for training: {original_steps}. You may get some"
                    f" unexpected results when using this timestep schedule."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.num_inference_steps = len(timesteps)
            self.custom_timesteps = True

            # Apply strength (e.g. for img2img pipelines) (see StableDiffusionImg2ImgPipeline.get_timesteps)
            init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps)
            t_start = max(self.num_inference_steps - init_timestep, 0)
            timesteps = timesteps[t_start * self.order :]
            # TODO: also reset self.num_inference_steps?
        else:
            # 2.2 Create the "standard" LCM inference timestep schedule.
            if num_inference_steps > self.ddpm_num_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.ddpm_num_timesteps`:"
                    f" {self.ddpm_num_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.ddpm_num_timesteps} timesteps."
                )

            skipping_step = len(lcm_origin_timesteps) // num_inference_steps

            if skipping_step < 1:
                raise ValueError(
                    f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
                )

            self.num_inference_steps = num_inference_steps

            if num_inference_steps > original_steps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
                    f" {original_steps} because the final timestep schedule will be a subset of the"
                    f" `original_inference_steps`-sized initial timestep schedule."
                )

            # LCM Inference Steps Schedule
            lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy()
            # Select (approximately) evenly spaced indices from lcm_origin_timesteps.
            inference_indices = np.linspace(0, len(lcm_origin_timesteps), num=num_inference_steps, endpoint=False)
            inference_indices = np.floor(inference_indices).astype(np.int64)
            timesteps = lcm_origin_timesteps[inference_indices]

        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)

        self._step_index = None

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
    def retrieve_timesteps(

        self,

        num_inference_steps: Optional[int] = None,

        device: Optional[Union[str, torch.device]] = None,

        timesteps: Optional[List[int]] = None,

        **kwargs,

    ):
        """

        Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

        custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



        Args:

            scheduler (`SchedulerMixin`):

                The scheduler to get timesteps from.

            num_inference_steps (`int`):

                The number of diffusion steps used when generating samples with a pre-trained model. If used,

                `timesteps` must be `None`.

            device (`str` or `torch.device`, *optional*):

                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

            timesteps (`List[int]`, *optional*):

                    Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default

                    timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`

                    must be `None`.



        Returns:

            `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

            second element is the number of inference steps.

        """
        if timesteps is not None:
            self.set_timesteps(timesteps=timesteps, device=device, **kwargs)
            timesteps = self.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.set_timesteps(num_inference_steps, device=device, **kwargs)
            timesteps = self.timesteps
        return timesteps, num_inference_steps   

    @torch.no_grad()
    def sample(self,

               S,

               batch_size,

               shape,

               conditioning=None,

               callback=None,

               normals_sequence=None,

               img_callback=None,

               verbose=True,

               x_T=None,

               guidance_scale=5.,

               original_inference_steps=50,

               timesteps=None,

               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...

               **kwargs

               ):
        if conditioning is not None:
            if isinstance(conditioning, dict):
                ctmp = conditioning[list(conditioning.keys())[0]]
                while isinstance(ctmp, list): ctmp = ctmp[0]
                cbs = ctmp.shape[0]
                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        self.make_schedule(verbose=verbose)
        self.num_inference_steps = S
        # sampling
        if len(shape)==3:
            C, H, W = shape
            size = (batch_size, C, H, W)
        else:
            C, T = shape
            size = (batch_size, C, T) 

        samples, intermediates = self.lcm_sampling(conditioning, size,
                                                    x_T=x_T,
                                                    guidance_scale=guidance_scale,
                                                    original_inference_steps=original_inference_steps,
                                                    timesteps=timesteps
                                                    )
        return samples, intermediates

    @torch.no_grad()
    def lcm_sampling(self, cond, shape,

                      x_T=None,

                      guidance_scale=1.,original_inference_steps=100,timesteps=None):
        device = self.model.betas.device
        timesteps, num_inference_steps = self.retrieve_timesteps(
            self.num_inference_steps, device, timesteps, original_inference_steps=original_inference_steps
        )
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        
        w = torch.tensor(guidance_scale - 1).repeat(b)
        w_embedding = self.get_guidance_scale_embedding(w, embedding_dim=256).to(
            device=device, dtype=img.dtype
        )
        
        # import ipdb
        # ipdb.set_trace()
        # 8. LCM MultiStep Sampling Loop:
        num_warmup_steps = len(timesteps) - num_inference_steps
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                img = img.to(cond.dtype)
                ts = torch.full((b,), t, device=device, dtype=torch.long)
                # model prediction (v-prediction, eps, x)
                model_pred = self.model.apply_model(img, ts, cond,self.model.unet, w_cond=w_embedding)

                # compute the previous noisy sample x_t -> x_t-1
                img, denoised = self.step(model_pred, t, img, return_dict=False)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps):
                    progress_bar.update()
        return denoised, img

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

    def get_scalings_for_boundary_condition_discrete(self, timestep):
        self.sigma_data = 0.5  # Default: 0.5
        scaled_timestep = timestep * self.timestep_scaling

        c_skip = self.sigma_data**2 / (scaled_timestep**2 + self.sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + self.sigma_data**2) ** 0.5
        return c_skip, c_out

    @torch.no_grad()
    def step(

        self,

        model_output: torch.FloatTensor,

        timestep: int,

        sample: torch.FloatTensor,

        generator: Optional[torch.Generator] = None,

        return_dict: bool = True,

    ):
        """

        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion

        process from the learned model outputs (most often the predicted noise).



        Args:

            model_output (`torch.FloatTensor`):

                The direct output from learned diffusion model.

            timestep (`float`):

                The current discrete timestep in the diffusion chain.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by the diffusion process.

            generator (`torch.Generator`, *optional*):

                A random number generator.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.

        Returns:

            [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:

                If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a

                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )
        
        if self.step_index is None:
            self._init_step_index(timestep)
        # 1. get previous step value
        prev_step_index = self.step_index + 1
        if prev_step_index < len(self.timesteps):
            prev_timestep = self.timesteps[prev_step_index]
        else:
            prev_timestep = timestep

        # 2. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else torch.tensor(1.0)

        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 3. Get scalings for boundary conditions

        c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)

        # 4. Compute the predicted original sample x_0 based on the model parameterization
        if self.prediction_type == "epsilon":  # noise-prediction
            predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
        elif self.prediction_type == "sample":  # x-prediction
            predicted_original_sample = model_output
        elif self.prediction_type == "v_prediction":  # v-prediction
            predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction` for `LCMScheduler`."
            )


        # 5. Denoise model output using boundary conditions
        denoised = c_out * predicted_original_sample + c_skip * sample

        # 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
        # Noise is not used on the final timestep of the timestep schedule.
        # This also means that noise is not used for one-step sampling.
        if self.step_index != self.num_inference_steps - 1:
            noise = torch.randn(model_output.shape, device=model_output.device)
            prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
        else:
            prev_sample = denoised

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample, denoised)

        return prev_sample, denoised