Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 12,988 Bytes
			
			6efc863  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390  | 
								import numpy as np
import torch
from torch import nn as nn
from torchvision.ops.misc import FrozenBatchNorm2d
import logging
import h5py
from tqdm import tqdm
import random
import json
import os
import pathlib
# TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later.
dataset_split = {
    "audiocaps": ["train", "valid", "test"],
    "audioset": ["balanced_train", "unbalanced_train", "eval"],
    "BBCSoundEffects": ["train", "test"],
    "Clotho": ["train", "test", "valid"],
    "free_to_use_sounds": ["train", "test"],
    "paramount_motion": ["train", "test"],
    "sonniss_game_effects": ["train", "test"],
    "wesoundeffects": ["train", "test"],
    "MACS": ["train", "test"],
    "freesound": ["train", "test"],
    "FSD50K": ["train", "test", "valid"],
    "fsd50k_class_label": ["train", "test", "valid"],
    "esc50": ["train", "test"],
    "ESC50_1": ["train", "test"],
    "ESC50_2": ["train", "test"],
    "ESC50_3": ["train", "test"],
    "ESC50_4": ["train", "test"],
    "ESC50_5": ["train", "test"],
    "audiostock": ["train", "test"],
    "freesound_no_overlap_noesc50": ["train", "test"],
    "epidemic_sound_effects": ["train", "test"],
    "VGGSound": ["train", "test"],
    "urbansound8k_class_label": ["train", "test"],
    "audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
    "audioset_t5_debiased": ["balanced_train", "unbalanced_train", "eval"],
    "epidemic_sound_effects_t5": ["train", "test"],
    "epidemic_sound_effects_t5_debiased": ["train", "test"],
    "WavText5K": ["train", "test"],
    "esc50_no_overlap": ["train", "test"],
    "usd8k_no_overlap": ["train", "test"],
    "fsd50k_200_class_label": ["train", "test", "valid"],
    "fma_full": ["train", "test"],
    "Genius": ["train", "test"],
    "Jamendo": ["train", "test"],
    "juno": ["train", "test"],
    "CMU_Arctic": ["train", "test"],
    "ravdess": ["train", "test"],
    "Europarl-st": ["train", "test"],
    "common_voice": ["train", "test"],
    "Jamendo_16bit": ["train", "test"],
    "genius_16bit_128": ["train", "test"],
    "juno_16bit": ["train", "test"],
    "fma_full_16bit_128": ["train", "test"],
    "GTZAN": ["train", "test"],
    }
def freeze_batch_norm_2d(module, module_match={}, name=""):
    """
    Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
    itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
    returned. Otherwise, the module is walked recursively and submodules are converted in place.
    Args:
        module (torch.nn.Module): Any PyTorch module.
        module_match (dict): Dictionary of full module names to freeze (all if empty)
        name (str): Full module name (prefix)
    Returns:
        torch.nn.Module: Resulting module
    Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
    """
    res = module
    is_match = True
    if module_match:
        is_match = name in module_match
    if is_match and isinstance(
            module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
    ):
        res = FrozenBatchNorm2d(module.num_features)
        res.num_features = module.num_features
        res.affine = module.affine
        if module.affine:
            res.weight.data = module.weight.data.clone().detach()
            res.bias.data = module.bias.data.clone().detach()
        res.running_mean.data = module.running_mean.data
        res.running_var.data = module.running_var.data
        res.eps = module.eps
    else:
        for child_name, child in module.named_children():
            full_child_name = ".".join([name, child_name]) if name else child_name
            new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
            if new_child is not child:
                res.add_module(child_name, new_child)
    return res
def exist(dataset_name, dataset_type):
    """
    Check if dataset exists
    """
    if dataset_type in dataset_split[dataset_name]:
        return True
    else:
        return False
def get_tar_path_from_dataset_name(
        dataset_names,
        dataset_types,
        islocal,
        dataset_path,
        proportion=1,
        full_dataset=None
):
    """
    Get tar path from dataset name and type
    """
    output = []
    for n in dataset_names:
        if full_dataset is not None and n in full_dataset:
            current_dataset_types = dataset_split[n]
        else:
            current_dataset_types = dataset_types
        for s in current_dataset_types:
            tmp = []
            if islocal:
                sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
                if not os.path.exists(sizefilepath_):
                    sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
            else:
                sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
            if not os.path.exists(sizefilepath_):
                continue
            sizes = json.load(open(sizefilepath_, "r"))
            for k in sizes.keys():
                if islocal:
                    tmp.append(f"{dataset_path}/{n}/{s}/{k}")
                else:
                    tmp.append(
                        f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
                    )
            if proportion != 1:
                tmp = random.sample(tmp, int(proportion * len(tmp)))
            output.append(tmp)
    return sum(output, [])
def get_tar_path_from_txts(txt_path, islocal, proportion=1):
    """
    Get tar path from txt path
    """
    if isinstance(txt_path, (list, tuple)):
        return sum(
            [
                get_tar_path_from_txts(
                    txt_path[i], islocal=islocal, proportion=proportion
                )
                for i in range(len(txt_path))
            ],
            [],
        )
    if isinstance(txt_path, str):
        with open(txt_path) as f:
            lines = f.readlines()
        if islocal:
            lines = [
                lines[i]
                .split("\n")[0]
                .replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
                for i in range(len(lines))
            ]
        else:
            lines = [
                lines[i].split("\n")[0].replace(".tar", ".tar -")
                for i in range(len(lines))
            ]
        if proportion != 1:
            print("Sampling tars with proportion of {}".format(proportion))
            lines = random.sample(lines, int(proportion * len(lines)))
        return lines
def get_mix_lambda(mixup_alpha, batch_size):
    mixup_lambdas = [
        np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
    ]
    return np.array(mixup_lambdas).astype(np.float32)
def do_mixup(x, mixup_lambda):
    """
    Args:
      x: (batch_size , ...)
      mixup_lambda: (batch_size,)
    Returns:
      out: (batch_size, ...)
    """
    out = (
            x.transpose(0, -1) * mixup_lambda
            + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
    ).transpose(0, -1)
    return out
def interpolate(x, ratio):
    """Interpolate data in time domain. This is used to compensate the
    resolution reduction in downsampling of a CNN.
    Args:
      x: (batch_size, time_steps, classes_num)
      ratio: int, ratio to interpolate
    Returns:
      upsampled: (batch_size, time_steps * ratio, classes_num)
    """
    (batch_size, time_steps, classes_num) = x.shape
    upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
    upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
    return upsampled
def pad_framewise_output(framewise_output, frames_num):
    """Pad framewise_output to the same length as input frames. The pad value
    is the same as the value of the last frame.
    Args:
      framewise_output: (batch_size, frames_num, classes_num)
      frames_num: int, number of frames to pad
    Outputs:
      output: (batch_size, frames_num, classes_num)
    """
    pad = framewise_output[:, -1:, :].repeat(
        1, frames_num - framewise_output.shape[1], 1
    )
    """tensor for padding"""
    output = torch.cat((framewise_output, pad), dim=1)
    """(batch_size, frames_num, classes_num)"""
def process_ipc(index_path, classes_num, filename):
    # load data
    logging.info("Load Data...............")
    ipc = [[] for _ in range(classes_num)]
    with h5py.File(index_path, "r") as f:
        for i in tqdm(range(len(f["target"]))):
            t_class = np.where(f["target"][i])[0]
            for t in t_class:
                ipc[t].append(i)
    print(ipc)
    np.save(filename, ipc)
    logging.info("Load Data Succeed...............")
def save_to_dict(s, o_={}):
    sp = s.split(": ")
    o_.update({sp[0]: float(sp[1])})
    return o_
def get_data_from_log(txt_path):
    """
    Output dictionary from out.txt log file
    """
    with open(txt_path) as f:
        lines = f.readlines()
    val_data = {}
    train_data = {}
    train_losses = []
    train_losses_epoch = []
    for i in range(len(lines)):
        if "| INFO |" in lines[i]:
            if "Eval Epoch" in lines[i]:
                if "val_loss" in lines[i]:
                    # float(regex.sub("", lines[310].split("	")[-1]).replace(" ", ""))
                    line = lines[i].split("Eval Epoch: ")[-1]
                    num_epoch = int(line.split("	")[0].split(" ")[0])
                    d = {
                        line.split("	")[0]
                        .split(" ")[1]
                        .replace(":", ""): float(line.split("	")[0].split(" ")[-1])
                    }
                    for i in range(1, len(line.split("	"))):
                        d = save_to_dict(line.split("	")[i], d)
                    val_data[num_epoch] = d
            elif "Train Epoch" in lines[i]:
                num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
                loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
                train_losses.append(loss)
                train_losses_epoch.append(num_epoch)
    for i in range(len(train_losses)):
        train_data[i] = {
            "num_epoch": train_losses_epoch[i],
            "train_loss": train_losses[i],
        }
    return train_data, val_data
def save_p(obj, filename):
    import pickle
    try:
        from deepdiff import DeepDiff
    except:
        os.system("pip install deepdiff")
        from deepdiff import DeepDiff
    with open(filename, "wb") as file:
        pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)  # highest protocol
    with open(filename, "rb") as file:
        z = pickle.load(file)
    assert (
            DeepDiff(obj, z, ignore_string_case=True) == {}
    ), "there is something wrong with the saving process"
    return
def load_p(filename):
    import pickle
    with open(filename, "rb") as file:
        z = pickle.load(file)
    return z
def save_json(data, name="data.json"):
    import json
    with open(name, 'w') as fp:
        json.dump(data, fp)
    return
def load_json(name):
    import json
    with open(name, 'r') as fp:
        data = json.load(fp)
    return data
from multiprocessing import Process, Manager
from multiprocessing import Process, Value, Array
from ctypes import c_wchar
def load_class_label(path):
    # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
    # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
    out = None
    if path is not None:
        if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
            out = load_p(path)
        elif pathlib.Path(path).suffix in [".json", ".txt"]:
            out = load_json(path)
        elif pathlib.Path(path).suffix in [".npy", ".npz"]:
            out = np.load(path)
        elif pathlib.Path(path).suffix in [".csv"]:
            import pandas as pd
            out = pd.read_csv(path)
    return out
    # if out is None:
    #     return None
    # else:
    #     key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False)
    #     val = Array('i', out.values(), lock=False)
    #     return (key, val)
from torch import optim
def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
    if optimizer_name.lower() == "adamw":
        optimizer = optim.AdamW(
            params, lr=lr, betas=betas, eps=eps
        )
    elif optimizer_name.lower() == "sgd":
        optimizer = optim.SGD(
            params, lr=lr, momentum=momentum
        )
    elif optimizer_name.lower() == "adam":
        optimizer = optim.Adam(
            params, lr=lr, betas=betas, eps=eps
        )
    else:
        raise ValueError("optimizer name is not correct")
    return optimizer
 |