Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,475 Bytes
6efc863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""
Calculate Frechet Audio Distance betweeen two audio directories.
Frechet distance implementation adapted from: https://github.com/mseitzer/pytorch-fid
VGGish adapted from: https://github.com/harritaylor/torchvggish
"""
import os
import numpy as np
from glob import glob
import torch
from torch import nn
from scipy import linalg
from tqdm import tqdm
import soundfile as sf
import resampy
from multiprocessing.dummy import Pool as ThreadPool
from src.torchvggish.torchvggish.vggish import VGGishlocal
SAMPLE_RATE = 16000 # resample audio file to SAMPLE_RATE. since uses the pretrained vggish model which takes wav_data as input
def load_audio_task(fname):# load wav file and resample to SAMPLE_RATE
wav_data, sr = sf.read(fname, dtype='int16')
assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype
wav_data = wav_data / 32768.0 # Convert to [-1.0, +1.0]
# Convert to mono
if len(wav_data.shape) > 1:
wav_data = np.mean(wav_data, axis=1)
if sr != SAMPLE_RATE:
wav_data = resampy.resample(wav_data, sr, SAMPLE_RATE)
return wav_data, SAMPLE_RATE
# use pretrained torchvggish as embedding extractor, and calculate the statistic of wav file
class FrechetAudioDistance:
def __init__(self, use_pca=False, use_activation=False, verbose=False, audio_load_worker=8):
# self.__get_model(use_pca=use_pca, use_activation=use_activation)
self.__get_local_model(local_path='src/torchvggish/docs',use_pca=use_pca, use_activation=use_activation)
self.verbose = verbose
self.audio_load_worker = audio_load_worker
def __get_model(self, use_pca=False, use_activation=False):
"""
Params:
-- x : Either
(i) a string which is the directory of a set of audio files, or
(ii) a np.ndarray of shape (num_samples, sample_length)
"""
self.model = torch.hub.load('harritaylor/torchvggish', 'vggish')
if not use_pca:
self.model.postprocess = False
if not use_activation:
self.model.embeddings = nn.Sequential(*list(self.model.embeddings.children())[:-1])
self.model.eval()
def __get_local_model(self,local_path,use_pca=False, use_activation=False):
self.model = VGGishlocal(local_path)
if not use_pca:
self.model.postprocess = False
if not use_activation:
self.model.embeddings = nn.Sequential(*list(self.model.embeddings.children())[:-1])
self.model.eval()
def get_embeddings(self, x, sr=16000):
"""
Get embeddings using VGGish model.
Params:
-- x : Either
(i) a string which is the directory of a set of audio files, or
(ii) a list of np.ndarray audio samples
-- sr : Sampling rate, if x is a list of audio samples. Default value is 16000.
"""
embd_lst = []
if isinstance(x, list):# np.ndarray
try:
for audio, sr in tqdm(x, disable=(not self.verbose)):
embd = self.model.forward(audio, sr)
if self.model.device == torch.device('cuda'):
embd = embd.cpu()
embd = embd.detach().numpy()
embd_lst.append(embd)
except Exception as e:
print("[Frechet Audio Distance] get_embeddings throw an exception: {}".format(str(e)))
elif isinstance(x, str):
try:
for fname in tqdm(os.listdir(x), disable=(not self.verbose)):
embd = self.model.forward(os.path.join(x, fname))
if self.model.device == torch.device('cuda'):
embd = embd.cpu()
embd = embd.detach().numpy()
embd_lst.append(embd)
except Exception as e:
print("[Frechet Audio Distance] get_embeddings throw an exception: {}".format(str(e)))
else:
raise AttributeError
# print("embd_lst_len",len(embd_lst))
return np.concatenate(embd_lst, axis=0)
def calculate_embd_statistics(self, embd_lst):
if isinstance(embd_lst, list):
embd_lst = np.array(embd_lst)
mu = np.mean(embd_lst, axis=0)
sigma = np.cov(embd_lst, rowvar=False)
return mu, sigma
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6):
"""
Adapted from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
# print(f"mu1.shape:{mu1.shape},mu2.shape:{sigma1.shape}")
mu1 = np.atleast_1d(mu1) # shape(128,)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)# shape(128,128)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
print(f"diff^2:{diff.dot(diff)}, sigma1:{np.trace(sigma1)},sigma2:{np.trace(sigma2)},2 * tr_covmean{2 * tr_covmean}")
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def load_audio_files(self, dir):# load_audio_task会resample
task_results = []
all_wav_files = glob(os.path.join(dir,"*.wav"))
pool = ThreadPool(self.audio_load_worker)
pbar = tqdm(total=len(all_wav_files), disable=(not self.verbose))
def update(*a):
pbar.update()
if self.verbose:
print("[Frechet Audio Distance] Loading audio from {}...".format(dir))
for fname in all_wav_files:
res = pool.apply_async(load_audio_task, args=(fname,), callback=update)# load_audio_task会resample
task_results.append(res)
pool.close()
pool.join()
return [k.get() for k in task_results] # get return value,each is (wav_data, sample_rate)
def score(self, background_dir, eval_dir, store_embds=False):
try:
audio_background = self.load_audio_files(background_dir)
audio_eval = self.load_audio_files(eval_dir)
print("audios len",len(audio_background),len(audio_eval))
embds_background = self.get_embeddings(audio_background) # (N,128)
embds_eval = self.get_embeddings(audio_eval) # (M,128)
# print(embds_background.shape,embds_eval.shape)
if store_embds:
np.save("embds_background.npy", embds_background)
np.save("embds_eval.npy", embds_eval)
if len(embds_background) == 0:
print("[Frechet Audio Distance] background set dir is empty, exitting...")
return -1
if len(embds_eval) == 0:
print("[Frechet Audio Distance] eval set dir is empty, exitting...")
return -1
mu_background, sigma_background = self.calculate_embd_statistics(embds_background)
mu_eval, sigma_eval = self.calculate_embd_statistics(embds_eval)
fad_score = self.calculate_frechet_distance(
mu_background,
sigma_background,
mu_eval,
sigma_eval
)
return fad_score
except Exception as e:
print("[Frechet Audio Distance] exception thrown, {}".format(str(e)))
return -1
|