Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,543 Bytes
6efc863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from ldm.modules.diffusionmodules.util import checkpoint
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class Conv1dGEGLU(nn.Module):
def __init__(self, dim_in, dim_out,kernel_size = 9):
super().__init__()
self.proj = nn.Conv1d(dim_in, dim_out * 2,kernel_size=kernel_size,padding=kernel_size//2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=1)
return x * F.gelu(gate)
class Conv1dFeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.,kernel_size = 9):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Conv1d(dim, inner_dim,kernel_size=kernel_size,padding=kernel_size//2),
nn.GELU()
) if not glu else Conv1dGEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Conv1d(inner_dim, dim_out,kernel_size=kernel_size,padding=kernel_size//2)
)
def forward(self, x): # x shape (B,C,T)
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.zero-initializing the final convolutional layer in each block prior to any residual connections can accelerate training.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了
super().__init__()
inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):# x:(b,T,C), context:(b,seq_len,context_dim)
h = self.heads
q = self.to_q(x)# q:(b,T,inner_dim)
context = default(context, x)
k = self.to_k(context)# (b,seq_len,inner_dim)
v = self.to_v(context)# (b,seq_len,inner_dim)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,T,seq_len)
if exists(mask):# false
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,T,inner_dim/head)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,T,inner_dim)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): # 1 self 1 cross or 2 self
super().__init__()
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention,if context is none
self.ff = Conv1dFeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # use as cross attention
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
def _forward(self, x, context=None):# x shape:(B,T,C)
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x).permute(0,2,1)).permute(0,2,1) + x
return x
class TemporalTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
self.proj_in = nn.Conv1d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)]
)
self.proj_out = zero_module(nn.Conv1d(inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0))# initialize with zero
def forward(self, x, context=None):# x shape (b,c,t)
# note: if no context is given, cross-attention defaults to self-attention
x_in = x
x = self.norm(x)# group norm
x = self.proj_in(x)# no shape change
x = rearrange(x,'b c t -> b t c')
for block in self.transformer_blocks:
x = block(x, context=context)# context shape [b,seq_len=77,context_dim]
x = rearrange(x,'b t c -> b c t')
x = self.proj_out(x)
return x + x_in
class PositionalEncoding(nn.Module):
def __init__(self, num_hiddens, max_len=2000):
super(PositionalEncoding, self).__init__()
self.P = torch.zeros((1, max_len, num_hiddens))
X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000,
torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)
self.P[:, :, 0::2] = torch.sin(X)
self.P[:, :, 1::2] = torch.cos(X)
def forward(self, x):
x = x + self.P[:, :x.shape[1], :].to(x.device)
return x
class PositionEmbedding(nn.Module):
MODE_EXPAND = 'MODE_EXPAND'
MODE_ADD = 'MODE_ADD'
MODE_CONCAT = 'MODE_CONCAT'
def __init__(self,
num_embeddings,
embedding_dim,
mode=MODE_ADD):
super(PositionEmbedding, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.mode = mode
if self.mode == self.MODE_EXPAND:
self.weight = nn.Parameter(torch.Tensor(num_embeddings * 2 + 1, embedding_dim))
else:
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
self.reset_parameters()
def reset_parameters(self):
# use xavier_normal_ to initialize
torch.nn.init.xavier_normal_(self.weight)
# use sin cons to initialize
# X = torch.arange(self.num_embeddings, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000,
# torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) / self.embedding_dim)
# init = torch.Tensor(self.num_embeddings,self.embedding_dim)
# init[:, 0::2] = torch.sin(X)
# init[:, 1::2] = torch.cos(X)
# self.weight.data.copy_(init)
def forward(self, x):
if self.mode == self.MODE_EXPAND:
indices = torch.clamp(x, -self.num_embeddings, self.num_embeddings) + self.num_embeddings
return F.embedding(indices.type(torch.LongTensor), self.weight)
batch_size, seq_len = x.size()[:2]
embeddings = self.weight[:seq_len, :].view(1, seq_len, self.embedding_dim)
if self.mode == self.MODE_ADD:
return x + embeddings
if self.mode == self.MODE_CONCAT:
return torch.cat((x, embeddings.repeat(batch_size, 1, 1)), dim=-1)
raise NotImplementedError('Unknown mode: %s' % self.mode)
def extra_repr(self):
return 'num_embeddings={}, embedding_dim={}, mode={}'.format(
self.num_embeddings, self.embedding_dim, self.mode,
)
class TemporalTransformerSkip(TemporalTransformer):
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__(in_channels, n_heads, d_head,
depth, dropout, context_dim)
self.skip_linear = nn.Linear(2 * in_channels, in_channels)
def forward(self, x,skip, context=None):# x shape (b,c,t)
# note: if no context is given, cross-attention defaults to self-attention
x_in = x
x = self.norm(x)# group norm
x = self.proj_in(x)# no shape change
x = rearrange(x,'b c t -> b t c')
skip = rearrange(skip,'b c t -> b t c')
x = self.skip_linear(torch.cat([x,skip],dim=-1))
for block in self.transformer_blocks:
x = block(x, context=context)# context shape [b,seq_len=77,context_dim]
x = rearrange(x,'b t c -> b c t')
x = self.proj_out(x)
return x + x_in
|