Spaces:
Build error
Build error
import matplotlib | |
matplotlib.use('Agg') | |
from tasks.base_task import data_loader | |
from tasks.tts.fs2 import FastSpeech2Task | |
from tasks.tts.dataset_utils import FastSpeechDataset, BaseTTSDataset | |
import glob | |
import importlib | |
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse | |
from inference.base_tts_infer import load_data_preprocessor | |
from data_gen.tts.emotion import inference as EmotionEncoder | |
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance | |
from data_gen.tts.emotion.inference import preprocess_wav | |
from tqdm import tqdm | |
from utils.hparams import hparams | |
from data_gen.tts.data_gen_utils import build_phone_encoder, build_word_encoder | |
import random | |
import torch | |
import torch.optim | |
import torch.nn.functional as F | |
import torch.utils.data | |
from utils.indexed_datasets import IndexedDataset | |
from resemblyzer import VoiceEncoder | |
import torch.distributions | |
import numpy as np | |
import utils | |
import os | |
class GenerSpeech_dataset(BaseTTSDataset): | |
def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): | |
super().__init__(prefix, shuffle, test_items, test_sizes, data_dir) | |
self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None) | |
if prefix == 'valid': | |
indexed_ds = IndexedDataset(f'{self.data_dir}/train') | |
sizes = np.load(f'{self.data_dir}/train_lengths.npy') | |
index = [i for i in range(len(indexed_ds))] | |
random.shuffle(index) | |
index = index[:300] | |
self.sizes = sizes[index] | |
self.indexed_ds = [] | |
for i in index: | |
self.indexed_ds.append(indexed_ds[i]) | |
self.avail_idxs = list(range(len(self.sizes))) | |
if hparams['min_frames'] > 0: | |
self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']] | |
self.sizes = [self.sizes[i] for i in self.avail_idxs] | |
if prefix == 'test' and hparams['test_input_dir'] != '': | |
self.preprocessor, self.preprocess_args = load_data_preprocessor() | |
self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir']) | |
self.avail_idxs = [i for i, _ in enumerate(self.sizes)] | |
def load_test_inputs(self, test_input_dir): | |
inp_wav_paths = sorted(glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')) | |
binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') | |
pkg = ".".join(binarizer_cls.split(".")[:-1]) | |
cls_name = binarizer_cls.split(".")[-1] | |
binarizer_cls = getattr(importlib.import_module(pkg), cls_name) | |
phone_encoder = build_phone_encoder(hparams['binary_data_dir']) | |
word_encoder = build_word_encoder(hparams['binary_data_dir']) | |
voice_encoder = VoiceEncoder().cuda() | |
encoder = [phone_encoder, word_encoder] | |
sizes = [] | |
items = [] | |
EmotionEncoder.load_model(hparams['emotion_encoder_path']) | |
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args | |
for wav_fn in tqdm(inp_wav_paths): | |
item_name = wav_fn[len(test_input_dir) + 1:].replace("/", "_") | |
spk_id = emotion = 0 | |
item2tgfn = wav_fn.replace('.wav', '.TextGrid') # prepare textgrid alignment | |
txtpath = wav_fn.replace('.wav', '.txt') # prepare text | |
with open(txtpath, 'r') as f: | |
text_raw = f.readlines() | |
f.close() | |
ph, txt = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw[0], preprocess_args) | |
item = binarizer_cls.process_item(item_name, ph, txt, item2tgfn, wav_fn, spk_id, emotion, encoder, hparams['binarization_args']) | |
item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) | |
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) | |
items.append(item) | |
sizes.append(item['len']) | |
return items, sizes | |
def _get_item(self, index): | |
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: | |
index = self.avail_idxs[index] | |
if self.indexed_ds is None: | |
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') | |
return self.indexed_ds[index] | |
def __getitem__(self, index): | |
hparams = self.hparams | |
item = self._get_item(index) | |
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index]) | |
max_frames = hparams['max_frames'] | |
spec = torch.Tensor(item['mel'])[:max_frames] | |
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple'] | |
spec = spec[:max_frames] | |
phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) | |
sample = { | |
"id": index, | |
"item_name": item['item_name'], | |
"text": item['txt'], | |
"txt_token": phone, | |
"mel": spec, | |
"mel_nonpadding": spec.abs().sum(-1) > 0, | |
} | |
spec = sample['mel'] | |
T = spec.shape[0] | |
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None | |
if hparams['use_pitch_embed']: | |
assert 'f0' in item | |
if hparams.get('normalize_pitch', False): | |
f0 = item["f0"] | |
if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0: | |
f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \ | |
hparams['f0_mean'] | |
f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500) | |
pitch = f0_to_coarse(f0) | |
pitch = torch.LongTensor(pitch[:max_frames]) | |
else: | |
pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None | |
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) | |
uv = torch.FloatTensor(uv) | |
f0 = torch.FloatTensor(f0) | |
else: | |
f0 = uv = torch.zeros_like(mel2ph) | |
pitch = None | |
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch | |
sample["spk_embed"] = torch.Tensor(item['spk_embed']) | |
sample["emotion"] = item['emotion'] | |
sample["emo_embed"] = torch.Tensor(item['emo_embed']) | |
if hparams.get('use_word', False): | |
sample["ph_words"] = item["ph_words"] | |
sample["word_tokens"] = torch.LongTensor(item["word_tokens"]) | |
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames] | |
sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']]) | |
return sample | |
def collater(self, samples): | |
if len(samples) == 0: | |
return {} | |
hparams = self.hparams | |
id = torch.LongTensor([s['id'] for s in samples]) | |
item_names = [s['item_name'] for s in samples] | |
text = [s['text'] for s in samples] | |
txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) | |
mels = utils.collate_2d([s['mel'] for s in samples], 0.0) | |
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) | |
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) | |
batch = { | |
'id': id, | |
'item_name': item_names, | |
'nsamples': len(samples), | |
'text': text, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'mels': mels, | |
'mel_lengths': mel_lengths, | |
} | |
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) | |
pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None | |
uv = utils.collate_1d([s['uv'] for s in samples]) | |
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) if samples[0]['mel2ph'] is not None else None | |
batch.update({ | |
'mel2ph': mel2ph, | |
'pitch': pitch, | |
'f0': f0, | |
'uv': uv, | |
}) | |
spk_embed = torch.stack([s['spk_embed'] for s in samples]) | |
batch['spk_embed'] = spk_embed | |
emo_embed = torch.stack([s['emo_embed'] for s in samples]) | |
batch['emo_embed'] = emo_embed | |
if hparams.get('use_word', False): | |
ph_words = [s['ph_words'] for s in samples] | |
batch['ph_words'] = ph_words | |
word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0) | |
batch['word_tokens'] = word_tokens | |
mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0) | |
batch['mel2word'] = mel2word | |
ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0) | |
batch['ph2word'] = ph2word | |
return batch |