Spaces:
Build error
Build error
| base_config: ./base.yaml | |
| task_cls: tasks.vocoder.pwg.PwgTask | |
| aux_context_window: 2 # Context window size for auxiliary feature. | |
| use_pitch_embed: false | |
| ########################################################### | |
| # GENERATOR NETWORK ARCHITECTURE SETTING # | |
| ########################################################### | |
| generator_params: | |
| in_channels: 1 # Number of input channels. | |
| out_channels: 1 # Number of output channels. | |
| kernel_size: 3 # Kernel size of dilated convolution. | |
| layers: 30 # Number of residual block layers. | |
| stacks: 3 # Number of stacks i.e., dilation cycles. | |
| residual_channels: 64 # Number of channels in residual conv. | |
| gate_channels: 128 # Number of channels in gated conv. | |
| skip_channels: 64 # Number of channels in skip conv. | |
| aux_channels: 80 # Number of channels for auxiliary feature conv. | |
| # Must be the same as num_mels. | |
| # If set to 2, previous 2 and future 2 frames will be considered. | |
| dropout: 0.0 # Dropout rate. 0.0 means no dropout applied. | |
| use_weight_norm: true # Whether to use weight norm. | |
| # If set to true, it will be applied to all of the conv layers. | |
| upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture. | |
| upsample_params: # Upsampling network parameters. | |
| upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size. | |
| use_pitch_embed: false | |
| use_nsf: false | |
| ########################################################### | |
| # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # | |
| ########################################################### | |
| discriminator_params: | |
| in_channels: 1 # Number of input channels. | |
| out_channels: 1 # Number of output channels. | |
| kernel_size: 3 # Number of output channels. | |
| layers: 10 # Number of conv layers. | |
| conv_channels: 64 # Number of chnn layers. | |
| bias: true # Whether to use bias parameter in conv. | |
| use_weight_norm: true # Whether to use weight norm. | |
| # If set to true, it will be applied to all of the conv layers. | |
| nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. | |
| nonlinear_activation_params: # Nonlinear function parameters | |
| negative_slope: 0.2 # Alpha in LeakyReLU. | |
| rerun_gen: true | |
| ########################################################### | |
| # STFT LOSS SETTING # | |
| ########################################################### | |
| stft_loss_params: | |
| fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss. | |
| hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss | |
| win_lengths: [600, 1200, 240] # List of window length for STFT-based loss. | |
| window: "hann_window" # Window function for STFT-based loss | |
| use_mel_loss: false | |
| ########################################################### | |
| # ADVERSARIAL LOSS SETTING # | |
| ########################################################### | |
| lambda_adv: 4.0 # Loss balancing coefficient. | |
| ########################################################### | |
| # OPTIMIZER & SCHEDULER SETTING # | |
| ########################################################### | |
| generator_optimizer_params: | |
| lr: 0.0001 # Generator's learning rate. | |
| eps: 1.0e-6 # Generator's epsilon. | |
| weight_decay: 0.0 # Generator's weight decay coefficient. | |
| generator_scheduler_params: | |
| step_size: 200000 # Generator's scheduler step size. | |
| gamma: 0.5 # Generator's scheduler gamma. | |
| # At each step size, lr will be multiplied by this parameter. | |
| generator_grad_norm: 10 # Generator's gradient norm. | |
| discriminator_optimizer_params: | |
| lr: 0.00005 # Discriminator's learning rate. | |
| eps: 1.0e-6 # Discriminator's epsilon. | |
| weight_decay: 0.0 # Discriminator's weight decay coefficient. | |
| discriminator_scheduler_params: | |
| step_size: 200000 # Discriminator's scheduler step size. | |
| gamma: 0.5 # Discriminator's scheduler gamma. | |
| # At each step size, lr will be multiplied by this parameter. | |
| discriminator_grad_norm: 1 # Discriminator's gradient norm. | |
| disc_start_steps: 40000 # Number of steps to start to train discriminator. | |