Spaces:
Build error
Build error
import torch | |
import os | |
import importlib | |
from inference.tts.base_tts_infer import BaseTTSInfer | |
from utils.ckpt_utils import load_ckpt, get_last_checkpoint | |
from modules.GenerSpeech.model.generspeech import GenerSpeech | |
from data_gen.tts.emotion import inference as EmotionEncoder | |
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance | |
from data_gen.tts.emotion.inference import preprocess_wav | |
from data_gen.tts.data_gen_utils import is_sil_phoneme | |
from resemblyzer import VoiceEncoder | |
from utils import audio | |
class GenerSpeechInfer(BaseTTSInfer): | |
def build_model(self): | |
model = GenerSpeech(self.ph_encoder) | |
model.eval() | |
load_ckpt(model, self.hparams['work_dir'], 'model') | |
return model | |
def preprocess_input(self, inp): | |
""" | |
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} | |
:return: | |
""" | |
# processed text | |
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args | |
text_raw = inp['text'] | |
item_name = inp.get('item_name', '<ITEM_NAME>') | |
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) | |
ph_token = self.ph_encoder.encode(ph) | |
# processed ref audio | |
ref_audio = inp['ref_audio'] | |
processed_ref_audio = 'example/temp.wav' | |
voice_encoder = VoiceEncoder().cuda() | |
encoder = [self.ph_encoder, self.word_encoder] | |
EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) | |
binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') | |
pkg = ".".join(binarizer_cls.split(".")[:-1]) | |
cls_name = binarizer_cls.split(".")[-1] | |
binarizer_cls = getattr(importlib.import_module(pkg), cls_name) | |
ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text | |
ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) | |
ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] | |
phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] | |
phs_for_align = " ".join(phs_for_align) | |
# prepare files for alignment | |
os.system('rm -r example/; mkdir example/') | |
audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) | |
with open(f'example/temp.lab', 'w') as f_txt: | |
f_txt.write(phs_for_align) | |
os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') | |
item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment | |
item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) | |
item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) | |
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) | |
item.update({ | |
'ref_ph': item['ph'], | |
'ph': ph, | |
'ph_token': ph_token, | |
'text': txt | |
}) | |
return item | |
def input_to_batch(self, item): | |
item_names = [item['item_name']] | |
text = [item['text']] | |
ph = [item['ph']] | |
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) | |
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) | |
mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) | |
f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) | |
# uv = torch.FloatTensor(item['uv']).to(self.device) | |
mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) | |
spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) | |
emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) | |
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) | |
mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) | |
word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) | |
batch = { | |
'item_name': item_names, | |
'text': text, | |
'ph': ph, | |
'mels': mels, | |
'f0': f0, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'spk_embed': spk_embed, | |
'emo_embed': emo_embed, | |
'mel2ph': mel2ph, | |
'ph2word': ph2word, | |
'mel2word': mel2word, | |
'word_tokens': word_tokens, | |
} | |
return batch | |
def forward_model(self, inp): | |
sample = self.input_to_batch(inp) | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
with torch.no_grad(): | |
output = self.model(txt_tokens, ref_mel2ph=sample['mel2ph'], ref_mel2word=sample['mel2word'], ref_mels=sample['mels'], | |
spk_embed=sample['spk_embed'], emo_embed=sample['emo_embed'], global_steps=300000, infer=True) | |
mel_out = output['mel_out'] | |
wav_out = self.run_vocoder(mel_out) | |
wav_out = wav_out.squeeze().cpu().numpy() | |
return wav_out | |
if __name__ == '__main__': | |
inp = { | |
'text': 'here we go', | |
'ref_audio': 'assets/0011_001570.wav' | |
} | |
GenerSpeechInfer.example_run(inp) | |