File size: 3,645 Bytes
c5f8b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm



class VQMotionDataset(data.Dataset):
    def __init__(self, dataset_name, window_size = 64, unit_length = 4):
        self.window_size = window_size
        self.unit_length = unit_length
        self.dataset_name = dataset_name

        if dataset_name == 't2m':
            self.data_root = './dataset/HumanML3D'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 22
            self.max_motion_length = 196
            self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'

        elif dataset_name == 'kit':
            self.data_root = './dataset/KIT-ML'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 21

            self.max_motion_length = 196
            self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
        
        joints_num = self.joints_num

        mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
        std = np.load(pjoin(self.meta_dir, 'std.npy'))

        split_file = pjoin(self.data_root, 'train.txt')

        self.data = []
        self.lengths = []
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(self.motion_dir, name + '.npy'))
                if motion.shape[0] < self.window_size:
                    continue
                self.lengths.append(motion.shape[0] - self.window_size)
                self.data.append(motion)
            except:
                # Some motion may not exist in KIT dataset
                pass

            
        self.mean = mean
        self.std = std
        print("Total number of motions {}".format(len(self.data)))

    def inv_transform(self, data):
        return data * self.std + self.mean
    
    def compute_sampling_prob(self) : 
        
        prob = np.array(self.lengths, dtype=np.float32)
        prob /= np.sum(prob)
        return prob
    
    def __len__(self):
        return len(self.data)

    def __getitem__(self, item):
        motion = self.data[item]
        
        idx = random.randint(0, len(motion) - self.window_size)

        motion = motion[idx:idx+self.window_size]
        "Z Normalization"
        motion = (motion - self.mean) / self.std

        return motion

def DATALoader(dataset_name,
               batch_size,
               num_workers = 8,
               window_size = 64,
               unit_length = 4):
    
    trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
    prob = trainSet.compute_sampling_prob()
    sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
    train_loader = torch.utils.data.DataLoader(trainSet,
                                              batch_size,
                                              shuffle=True,
                                              #sampler=sampler,
                                              num_workers=num_workers,
                                              #collate_fn=collate_fn,
                                              drop_last = True)
    
    return train_loader

def cycle(iterable):
    while True:
        for x in iterable:
            yield x