Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,904 Bytes
0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0f5e0af 0753fd3 939e0e4 0753fd3 57eeac9 939e0e4 0753fd3 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 57eeac9 939e0e4 0753fd3 939e0e4 57eeac9 0753fd3 939e0e4 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 57eeac9 f7211cd 0753fd3 57eeac9 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 0753fd3 939e0e4 57eeac9 0753fd3 eb0a0f3 0753fd3 f7211cd 0753fd3 939e0e4 fdd0b9c 939e0e4 57eeac9 0753fd3 939e0e4 0753fd3 57eeac9 939e0e4 57eeac9 0753fd3 57eeac9 0753fd3 57eeac9 939e0e4 0753fd3 57eeac9 0753fd3 939e0e4 0753fd3 939e0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
import argparse
import os
import re
import logging
from typing import List, Optional, Tuple, Generator
from threading import Thread
import gradio as gr
import PIL.Image
import torch
import numpy as np
from moviepy.editor import VideoFileClip
from transformers import AutoModelForCausalLM, TextIteratorStreamer
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Global Model Variables ---
model = None
streamer = None
# This should point to the directory containing your SVG file.
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
class MyTextIteratorStreamer(TextIteratorStreamer):
def manual_end(self):
"""Flushes any remaining cache and prints a newline to stdout."""
# Flush the cache, if it exists
if len(self.token_cache) > 0:
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
printable_text = text[self.print_len :]
self.token_cache = []
self.print_len = 0
else:
printable_text = ""
self.next_tokens_are_prompt = True
self.on_finalized_text(printable_text, stream_end=True)
def end(self):
pass
def submit_chat(chatbot, text_input):
response = ''
chatbot.append([text_input, response])
return chatbot, ''
# --- Helper Functions ---
latex_delimiters_set = [
{
"left": "\\(",
"right": "\\)",
"display": False
},
{
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
},
{
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
},
{
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True
},
{
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True
},
{
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True
},
{
"left": "\\[",
"right": "\\]",
"display": True
}
]
def load_video_frames(video_path: Optional[str], n_frames: int = 8) -> Optional[List[PIL.Image.Image]]:
"""Extracts a specified number of frames from a video file."""
if not video_path:
return None
try:
with VideoFileClip(video_path) as clip:
total_frames = int(clip.fps * clip.duration)
if total_frames <= 0: return None
num_to_extract = min(n_frames, total_frames)
indices = np.linspace(0, total_frames - 1, num_to_extract, dtype=int)
frames = [PIL.Image.fromarray(clip.get_frame(index / clip.fps)) for index in indices]
return frames
except Exception as e:
print(f"Error processing video {video_path}: {e}")
return None
def parse_model_output(response_text: str, enable_thinking: bool) -> str:
"""Formats the model output, separating 'thinking' and 'response' parts if enabled."""
if enable_thinking:
# Use a more robust regex to handle nested content and variations
think_match = re.search(r"<think>(.*?)</think>", response_text, re.DOTALL)
if think_match:
thinking_content = think_match.group(1).strip()
# Remove the think block from the original text to get the response
response_content = re.sub(r"<think>.*?</think>", "", response_text, flags=re.DOTALL).strip()
return f"**Thinking:**\n```\n{thinking_content}\n```\n\n**Response:**\n{response_content}"
else:
return response_text # No think tag found, return as is
else:
# If thinking is disabled, strip the tags just in case the model still generates them
return re.sub(r"<think>.*?</think>", "", response_text, flags=re.DOTALL).strip()
# --- MODIFIED Core Inference Logic (Now with Streaming) ---
@spaces.GPU
def run_inference(
chatbot: List,
image_input: Optional[PIL.Image.Image],
video_input: Optional[str],
do_sample: bool,
max_new_tokens: int,
enable_thinking: bool,
enable_thinking_budget: bool, # NEWLY ADDED
thinking_budget: int, # NEWLY ADDED
):
"""
Runs a single turn of inference and yields the output stream for a gr.Chatbot.
This function is now a generator.
"""
prompt = chatbot[-1][0]
if (not image_input and not video_input and not prompt) or not prompt:
gr.Warning("A text prompt is required for generation.")
chatbot.pop(-1)
# MODIFICATION: Yield the current state and return to avoid errors
yield chatbot
return
content = []
if image_input:
content.append({"type": "image", "image": image_input})
if video_input:
frames = load_video_frames(video_input)
if frames:
content.append({"type": "video", "video": frames})
else:
gr.Warning("Failed to process the video file.")
chatbot.pop(-1)
yield chatbot
return
content.append({"type": "text", "text": prompt})
messages = [{"role": "user", "content": content}]
logger.info(messages)
try:
if video_input:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking, max_pixels=896*896)
else:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking)
except Exception as e:
gr.Warning(f"Error during input preprocessing: {e}")
chatbot.pop(-1)
yield chatbot
return
input_ids = input_ids.to(model.device)
if pixel_values is not None:
pixel_values = pixel_values.to(model.device, dtype=torch.bfloat16)
if grid_thws is not None:
grid_thws = grid_thws.to(model.device)
gen_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": do_sample,
"eos_token_id": model.text_tokenizer.eos_token_id,
"pad_token_id": model.text_tokenizer.pad_token_id,
"streamer": streamer,
"use_cache": True,
"enable_thinking": enable_thinking,
"enable_thinking_budget": enable_thinking_budget,
"thinking_budget": thinking_budget
}
with torch.inference_mode():
thread = Thread(target=model.generate, kwargs={
"inputs": input_ids,
"pixel_values": pixel_values,
"grid_thws": grid_thws,
**gen_kwargs
})
thread.start()
# MODIFICATION: Stream output token by token
response_text = ""
for new_text in streamer:
response_text += new_text
# Append only the new text chunk to the last response
chatbot[-1][1] = response_text
yield chatbot # Yield the updated history
thread.join()
# MODIFICATION: Format the final response once generation is complete
formatted_response = parse_model_output(response_text, enable_thinking)
chatbot[-1][1] = formatted_response
yield chatbot # Yield the final, formatted response
logger.info("\n[OVIS_CONV_START]")
[print(f'Q{i}:\n {request}\nA{i}:\n {answer}\n') for i, (request, answer) in enumerate(chatbot, 1)]
logger.info("[OVIS_CONV_END]")
# --- UI Helper Functions ---
def toggle_media_input(choice: str) -> Tuple:
"""Switches visibility between Image/Video inputs and their corresponding examples."""
if choice == "Image":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None), gr.update(visible=True), gr.update(visible=False)
else: # Video
return gr.update(visible=False, value=None), gr.update(visible=True, value=None), gr.update(visible=False), gr.update(visible=True)
# --- Build Gradio Application ---
def build_demo(model_path: str):
"""Builds the Gradio user interface for the model."""
global model, streamer
device = "cuda"
print(f"Loading model {model_path} onto device {device}...")
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to(device).eval()
text_tokenizer = model.text_tokenizer
streamer = MyTextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
print("Model loaded successfully.")
model_name_display = model_path.split('/')[-1]
logo_html = ""
logo_svg_path = os.path.join(CUR_DIR, "resource", "logo.svg")
if os.path.exists(logo_svg_path):
with open(logo_svg_path, "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content_styled = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
logo_html = f'<span style="display: inline-block; vertical-align: middle;">{svg_content_styled}</span>'
else:
logo_html = '<span style="font-weight: bold; font-size: 2.5em; display: inline-block; vertical-align: middle;">Ovis</span>'
print(f"Warning: Logo file not found at {logo_svg_path}. Using text fallback.")
html_header = f"""
<p align="center" style="font-size: 2.5em; line-height: 1;">
{logo_html}
<span style="display: inline-block; vertical-align: middle;">{model_name_display}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_path}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""
# --- START: Slider synchronization logic functions ---
def adjust_max_tokens(thinking_budget_val: int, max_new_tokens_val: int) -> gr.Slider:
"""Adjusts max_new_tokens to be at least thinking_budget + 128."""
new_max_tokens = max(max_new_tokens_val, thinking_budget_val + 128)
return gr.update(value=new_max_tokens)
def adjust_thinking_budget(max_new_tokens_val: int, thinking_budget_val: int) -> gr.Slider:
"""Adjusts thinking_budget to be at most max_new_tokens - 128."""
new_thinking_budget = min(thinking_budget_val, max_new_tokens_val - 128)
return gr.update(value=new_thinking_budget)
# --- END: Slider synchronization logic functions ---
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your text here and press ENTER", lines=1, container=False)
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.HTML(html_header)
gr.Markdown("Note: The Thinking Budget mechanism is enabled only when `Deep Thinking` and `Thinking Budget` are both checked. Could tune down `Thinking Budget` for faster generation in `Deep Thinking` mode.")
with gr.Row():
with gr.Column(scale=4):
input_type_radio = gr.Radio(choices=["Image", "Video"], value="Image", label="Select Input Type")
image_input = gr.Image(label="Image Input", type="pil", visible=True)
video_input = gr.Video(label="Video Input", visible=False)
with gr.Accordion("Generation Settings", open=True):
do_sample = gr.Checkbox(label="Enable Sampling (Do Sample)", value=True)
enable_thinking = gr.Checkbox(label="Enable Deep Thinking", value=True)
enable_thinking_budget = gr.Checkbox(label="Enable Thinking Budget", value=True)
max_new_tokens = gr.Slider(minimum=256, maximum=4096, value=2048, step=32, label="Max New Tokens")
thinking_budget = gr.Slider(minimum=128, maximum=3968, value=1024, step=32, label="Thinking Budget")
with gr.Column(visible=True) as image_examples_col:
gr.Examples(
examples=[
[os.path.join(CUR_DIR, "examples", "ovis2_math0.jpg"), "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nEnd your response with 'Final answer: '."],
[os.path.join(CUR_DIR, "examples", "ovis2_math1.jpg"), "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nEnd your response with 'Final answer: '."],
[os.path.join(CUR_DIR, "examples", "ovis2_figure0.png"), "Explain this model."],
# [os.path.join(CUR_DIR, "examples", "ovis2_figure1.png"), "Organize the notes about GRPO in the figure."],
[os.path.join(CUR_DIR, "examples", "ovis2_multi0.jpg"), "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
],
inputs=[image_input, prompt_input]
)
with gr.Column(visible=False) as video_examples_col:
gr.Examples(examples=[[os.path.join(CUR_DIR, "examples", "video_demo.mp4"), "Describe the video."]],
inputs=[video_input, prompt_input])
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Ovis", height=600, show_copy_button=True, layout="panel", latex_delimiters=latex_delimiters_set)
prompt_input.render()
with gr.Row():
generate_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
# --- START: Event Handlers for UI Elements ---
input_type_radio.change(
fn=toggle_media_input,
inputs=input_type_radio,
outputs=[image_input, video_input, image_examples_col, video_examples_col]
)
# Event handlers for coupled sliders
thinking_budget.release(
fn=adjust_max_tokens,
inputs=[thinking_budget, max_new_tokens],
outputs=[max_new_tokens]
)
max_new_tokens.release(
fn=adjust_thinking_budget,
inputs=[max_new_tokens, thinking_budget],
outputs=[thinking_budget]
)
# MODIFICATION: Update run_inputs to include new controls
run_inputs = [chatbot, image_input, video_input, do_sample, max_new_tokens, enable_thinking, enable_thinking_budget, thinking_budget]
generat_click_event = generate_btn.click(submit_chat, [chatbot, prompt_input], [chatbot, prompt_input]).then(run_inference, run_inputs, chatbot)
submit_event = prompt_input.submit(submit_chat, [chatbot, prompt_input], [chatbot, prompt_input]).then(run_inference, run_inputs, chatbot)
# MODIFICATION: Update clear button to reset new controls
# clear_btn.click(
# fn=lambda: ([], None, None, "", "Image", True, 2048, True, True, 1024),
# outputs=[chatbot, image_input, video_input, prompt_input, input_type_radio, do_sample, max_new_tokens, enable_thinking, enable_thinking_budget, thinking_budget]
# ).then(
# fn=toggle_media_input,
# inputs=input_type_radio,
# outputs=[image_input, video_input, image_examples_col, video_examples_col]
# )
clear_btn.click(
fn=lambda: (list(), None, None, ""),
outputs=[chatbot, image_input, video_input, prompt_input]
)
# --- END: Event Handlers for UI Elements ---
return demo
# --- Main Execution Block ---
# def parse_args():
# parser = argparse.ArgumentParser(description="Gradio interface for a single Multimodal Large Language Model.")
# parser.add_argument("--model-path", type=str, default='AIDC-AI/Ovis2.5-9B', help="Path to the model checkpoint on Hugging Face Hub or local directory.")
# parser.add_argument("--gpu", type=int, default=0, help="GPU index to run the model on.")
# parser.add_argument("--port", type=int, default=7860, help="Port to run the Gradio server on.")
# parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Server name for the Gradio app.")
# return parser.parse_args()
# if __name__ == "__main__":
# args = parse_args()
model_path = 'AIDC-AI/Ovis2.5-9B'
demo = build_demo(model_path=model_path)
# demo = build_demo(model_path=args.model_path)
# demo.launch(server_name=args.server_name, server_port=args.port, share=False, ssl_verify=False, show_error=True)
demo.queue().launch() |