File size: 6,243 Bytes
42fea26
 
e16319b
 
2005ef8
42fea26
 
e16319b
 
42fea26
 
 
 
 
 
 
 
 
 
e16319b
42fea26
e16319b
42fea26
e16319b
 
 
 
42fea26
 
e16319b
42fea26
 
e16319b
 
 
42fea26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e16319b
 
 
 
 
 
 
 
 
 
 
 
 
135611f
2e22cc7
 
b116de8
2e22cc7
 
 
 
 
b116de8
42fea26
 
 
 
e16319b
 
 
 
46b9cd3
e16319b
 
 
 
f9a2bde
46b9cd3
 
 
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
 
e16319b
46b9cd3
 
42fea26
 
46b9cd3
42fea26
 
 
 
e16319b
b1ee704
 
 
e16319b
42fea26
 
 
e16319b
42fea26
 
 
 
2005ef8
e16319b
 
42fea26
2005ef8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import spaces
import os
import re
import time
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread

model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B'

# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=8192,
                                             trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))

def submit_chat(chatbot, text_input):
    response = ''
    chatbot.append((text_input, response))
    return chatbot ,''

@spaces.GPU
def ovis_chat(chatbot, image_input):
    # preprocess inputs
    conversations = []
    response = ""
    text_input = chatbot[-1][0]
    for query, response in chatbot[:-1]:
        conversations.append({
            "from": "human",
            "value": query
        })
        conversations.append({
            "from": "gpt",
            "value": response
        })
    text_input = text_input.replace(image_placeholder, '')
    conversations.append({
        "from": "human",
        "value": text_input
    })
    if image_input is not None:
        conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
    prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
    attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
    input_ids = input_ids.unsqueeze(0).to(device=model.device)
    attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
    if image_input is None:
        pixel_values = [None]
    else:
        pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]

    with torch.inference_mode():
        gen_kwargs = dict(
            max_new_tokens=512,
            do_sample=False,
            top_p=None,
            top_k=None,
            temperature=None,
            repetition_penalty=None,
            eos_token_id=model.generation_config.eos_token_id,
            pad_token_id=text_tokenizer.pad_token_id,
            use_cache=True
        )
    response = ""
    thread = Thread(target=model.generate, 
                kwargs={"inputs": input_ids,
                        "pixel_values": pixel_values,
                        "attention_mask": attention_mask,
                        "streamer": streamer,
                        **gen_kwargs})
    thread.start()
    for new_text in streamer:
        response += new_text
        chatbot[-1][1] = response
        yield chatbot
    thread.join()
    # debug
    print('*'*60)
    print('*'*60)
    print('OVIS_CONV_START')
    for i, (request, answer) in enumerate(chatbot[:-1], 1):
        print(f'Q{i}:\n {request}')
        print(f'A{i}:\n {answer}')
    print('New_Q:\n', text_input)
    print('New_A:\n', response)
    print('OVIS_CONV_END')

def clear_chat():
    return [], None, ""

with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]

text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1]) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(label="image", height=350, type="pil")
            gr.Examples(
                examples=[
                    [f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."],
                    [f"{cur_dir}/examples/case1.png", "explain this model to me."],
                    [f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"],
                ],
                inputs=[image_input, text_input]
            )
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
            text_input.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

    send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
    submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])

demo.launch()