Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,010 Bytes
ff3266f cf4c13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import os
import subprocess
subprocess.run('pip install flash-attn==2.6.3 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from transformers import AutoModelForCausalLM
from test_img_edit import pipe_img_edit
from test_img_to_txt import pipe_txt_gen
from test_txt_to_img import pipe_t2i
# Constants
MAX_SEED = 10000
hf_token = os.getenv("HF_TOKEN")
HUB_MODEL_ID = "AIDC-AI/Ovis-U1-3B"
model, loading_info = AutoModelForCausalLM.from_pretrained(
HUB_MODEL_ID,
torch_dtype=torch.bfloat16,
output_loading_info=True,
token=hf_token,
trust_remote_code=True
)
print(f'Loading info of Ovis-U1:\n{loading_info}')
model = model.eval().to("cuda")
model = model.to(torch.bfloat16)
def set_global_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
@spaces.GPU
def process_txt_to_img(prompt: str, height: int, width: int, steps: int, final_seed: int, guidance_scale: float, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> list[Image.Image]:
set_global_seed(final_seed)
images = pipe_t2i(model, prompt, height, width, steps, cfg=guidance_scale, seed=final_seed)
return images
@spaces.GPU
def process_img_to_txt(prompt: str, img: Image.Image, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> str:
output_text = pipe_txt_gen(model, img, prompt)
return output_text
@spaces.GPU
def process_img_txt_to_img(prompt: str, img: Image.Image, steps: int, final_seed: int, txt_cfg: float, img_cfg: float, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> list[Image.Image]:
set_global_seed(final_seed)
images = pipe_img_edit(model, img, prompt, steps, txt_cfg, img_cfg, seed=final_seed)
return images
# Gradio UI
with gr.Blocks(title="Ovis-U1-3B") as demo:
gr.Markdown('''# Ovis-U1-3B
''')
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image + Text → Image"):
edit_image_input = gr.Image(label="Input Image", type="pil")
with gr.Row():
edit_prompt_input = gr.Textbox(
label="Prompt",
show_label=False,
placeholder="Describe the editing instruction...",
container=False,
lines=1
)
run_edit_image_btn = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
edit_img_guidance_slider = gr.Slider(
label="Image Guidance Scale",
minimum=1.0, maximum=10.0,
step=0.1, value=1.5
)
edit_txt_guidance_slider = gr.Slider(
label="Text Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=6.0
)
edit_num_steps_slider = gr.Slider(
label='Steps',
minimum=40, maximum=100,
value=50, step=1
)
edit_seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
edit_randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
img_edit_examples_data = [
["imgs/train.png", "Modify this image in a Ghibli style. "],
["imgs/chair.png", "Transfer the image into a faceted low-poly 3-D render style."],
["imgs/car.png", "Replace the tiny house on wheels in the image with a vintage car."],
]
gr.Examples(
examples=img_edit_examples_data,
inputs=[edit_image_input, edit_prompt_input],
cache_examples=False,
label="Image Editing Examples"
)
with gr.TabItem("Text → Image"):
with gr.Row():
prompt_gen_input = gr.Textbox(
label="Prompt",
show_label=False,
placeholder="Describe the image you want...",
container=False,
lines=1
)
run_image_gen_btn = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height_slider = gr.Slider(
label='height',
minimum=256, maximum=1536,
value=1024, step=32
)
width_slider = gr.Slider(
label='width',
minimum=256, maximum=1536,
value=1024, step=32
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=5.0
)
num_steps_slider = gr.Slider(
label='Steps',
minimum=40, maximum=100,
value=50, step=1
)
seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
text_gen_examples_data = [
["A breathtaking fairy with teal wings sits gracefully on a lotus flower in a serene pond, exuding elegance."],
["A winter mountain landscape at deep night with snowy terrain and colorful flowers, under beautiful clouds and no people, portrayed as an anime background illustration with intricate detail and sharp focus."],
["A photo of a pug wearing a cowboy hat and bandana, sitting on a hay bale."]
]
gr.Examples(
examples=text_gen_examples_data,
inputs=[prompt_gen_input],
cache_examples=False,
label="Image Generation Examples"
)
with gr.TabItem("Image → Text"):
image_understand_input = gr.Image(label="Input Image", type="pil")
with gr.Row():
prompt_understand_input = gr.Textbox(
label="Prompt",
show_label=False,
placeholder="Describe the question about image...",
container=False,
lines=1
)
run_image_understand_btn = gr.Button("Run", scale=0)
image_understanding_examples_data = [
["imgs/table.webp", "In what scenario does this picture take place?"],
["imgs/count.png", "How many broccoli are there in the picture?"],
["imgs/foot.webp", "Where is this picture located?"],
]
gr.Examples(
examples=image_understanding_examples_data,
inputs=[image_understand_input, prompt_understand_input],
cache_examples=False,
label="Image Understanding Examples"
)
clean_btn = gr.Button("Clear All Inputs/Outputs")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Images", columns=2, visible=True) # Default to visible, content will control
output_text = gr.Textbox(label="Generated Text", visible=False, lines=5, interactive=False)
@spaces.GPU
def run_img_txt_to_img_tab(prompt, img, steps, seed, txt_cfg, img_cfg, progress=gr.Progress(track_tqdm=True)):
if img is None:
return (
gr.update(value=[], visible=False),
gr.update(value="Please upload an image for editing.", visible=True)
)
# Seed is already finalized by the randomize_seed_fn in the click chain
imgs = process_img_txt_to_img(prompt, img, steps, seed, txt_cfg, img_cfg, progress=progress)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
@spaces.GPU
def run_txt_to_img_tab(prompt, height, width, steps, seed, guidance, progress=gr.Progress(track_tqdm=True)):
# Seed is already finalized by the randomize_seed_fn in the click chain
imgs = process_txt_to_img(prompt, height, width, steps, seed, guidance, progress=progress)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
@spaces.GPU
def run_img_to_txt_tab(img, prompt, progress=gr.Progress(track_tqdm=True)):
if img is None:
return (
gr.update(value=[], visible=False),
gr.update(value="Please upload an image for understanding.", visible=True)
)
txt = process_img_to_txt(prompt, img, progress=progress)
return (
gr.update(value=[], visible=False),
gr.update(value=txt, visible=True)
)
def clean_all_fn():
return (
# Tab 1 inputs
gr.update(value=None),
gr.update(value=""),
gr.update(value=1.5),
gr.update(value=6.0),
gr.update(value=50),
gr.update(value=42),
gr.update(value=False),
# Tab 2 inputs
gr.update(value=""), # prompt_gen_input
gr.update(value=1024),
gr.update(value=1024),
gr.update(value=5.0),
gr.update(value=50),
gr.update(value=42), # seed_slider
gr.update(value=False), # randomize_checkbox
# Tab 3 inputs
gr.update(value=None), # image_understand_input
gr.update(value=""), # prompt_understand_input
# Outputs
gr.update(value=[], visible=True), # output_gallery (reset and keep visible for next gen)
gr.update(value="", visible=False) # output_text (reset and hide)
)
# Event listeners for Image + Text -> Image
edit_inputs = [edit_prompt_input, edit_image_input, edit_num_steps_slider, edit_seed_slider, edit_txt_guidance_slider, edit_img_guidance_slider]
run_edit_image_btn.click(
fn=randomize_seed_fn,
inputs=[edit_seed_slider, edit_randomize_checkbox],
outputs=[edit_seed_slider]
).then(
fn=run_img_txt_to_img_tab,
inputs=edit_inputs,
outputs=[output_gallery, output_text]
)
edit_prompt_input.submit(
fn=randomize_seed_fn,
inputs=[edit_seed_slider, edit_randomize_checkbox],
outputs=[edit_seed_slider]
).then(
fn=run_img_txt_to_img_tab,
inputs=edit_inputs,
outputs=[output_gallery, output_text]
)
# Event listeners for Text -> Image
gen_inputs = [prompt_gen_input, height_slider, width_slider, num_steps_slider, seed_slider, guidance_slider]
run_image_gen_btn.click(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_txt_to_img_tab,
inputs=gen_inputs,
outputs=[output_gallery, output_text]
)
prompt_gen_input.submit(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_txt_to_img_tab,
inputs=gen_inputs,
outputs=[output_gallery, output_text]
)
# Event listeners for Image -> Text
understand_inputs = [image_understand_input, prompt_understand_input]
run_image_understand_btn.click(
fn=run_img_to_txt_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
prompt_understand_input.submit(
fn=run_img_to_txt_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
clean_btn.click(
fn=clean_all_fn,
inputs=[],
outputs=[
edit_image_input, edit_prompt_input, edit_img_guidance_slider, edit_txt_guidance_slider,
edit_num_steps_slider, edit_seed_slider, edit_randomize_checkbox,
prompt_gen_input, height_slider, width_slider, guidance_slider, num_steps_slider, seed_slider, randomize_checkbox,
image_understand_input, prompt_understand_input,
output_gallery, output_text
]
)
if __name__ == "__main__":
demo.launch(share=True, ssr_mode=False) |