File size: 38,552 Bytes
247c8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# -*- coding: utf-8 -*-

####  Importing Modules ####
import base64
import pandas as pd
import streamlit as st
from autoclean import data_clean
from model_pipeline_steps import get_problem_type1, model_build
from PIL import Image
from DA_P1 import get_details, imbalnce_ratio, word_cloud, plotly_target, plot_ngram
import pickle
from NLP_text_classification import model_train, predict_text, predict_csv
from kmeans import k_means
from jinja2.ext import i18n



info = {}

#********* Handling rturn variable in cache memory to solve reloading issue in streamlit ******#
@st.cache(allow_output_mutation=True)
def get_details_local(data):
    final_output = get_details(data)
    return final_output

@st.cache(allow_output_mutation=True)
def clean(dataset, drop_features):
    cleaned_data, steps_dict = data_clean(dataset, drop_features)
    return cleaned_data, steps_dict

@st.cache(allow_output_mutation=True)
def get_problem_type_local(cleaned_data, target_data):
    p_type = get_problem_type1(cleaned_data, target_data)
    return p_type

@st.cache(allow_output_mutation=True)
def model_build_local(cleaned_data, target_data, p_type, balance_data, steps_dict):
    model = model_build(cleaned_data, target_data, p_type, balance_data, steps_dict)
    return model

@st.cache(allow_output_mutation=True)
def model_train_local(dataset, input_feature, target_data, balance_data):
    model_info = model_train(dataset, input_feature, target_data, balance_data)
    return model_info

@st.cache(allow_output_mutation=True)
def word_cloud_local(dataset, input_col):
    plt = word_cloud(dataset, input_col)
    return plt

@st.cache(allow_output_mutation=True)
def plotly_target_local(dataset, tg_col):
    plt = plotly_target(dataset, tg_col)
    return plt

@st.cache(allow_output_mutation=True)
def plot_ngram_local(dataset, tg_col):
    plt = plot_ngram(dataset, tg_col)
    return plt

#******************************************************************#


def main():
    try:
        # setting tab title and icon
        st.set_page_config(page_title="AiNext",
                           page_icon="image.png")

        # Hiding streamlit wateermark
        hide_streamlit_style = """
                    <style>
                    #MainMenu {visibility: hidden;}
                    footer {visibility: hidden;}
                    </style>
                    """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)

        # To do Navigation Menu
        st.markdown(
            '<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">',
            unsafe_allow_html=True)
        st.markdown("""
        <nav class="navbar fixed-top navbar-expand-lg navbar-dark" style="background-color: #AED6F1;">
          <a class="navbar-brand" href=""><b><font color = "#8b0000">Ai</font><i style="color:#1997E5 ;">Next</i></b></a>
          <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
            <span class="navbar-toggler-icon"></span>
          </button>
          <div class="collapse navbar-collapse" id="navbarNav">
            <ul class="navbar-nav">
              <li class="nav-item active">
                <a class="nav-link disabled" href="#" style="color:black ;">Home <span class="sr-only">(current)</span></a>
              </li>
              <li class="nav-item">
                <a class="nav-link" href="mailto: technology.coe@digital.datamatics.com" style="color:black ;" target="_blank">Contact Us</a>
              </li>
            </ul>
          </div>
          <div>
          <a style="color:red;" href="https://www.datamatics.com/" target="_blank"><b>DATAMATICS</b></a>
          </div>
        </nav>
        """, unsafe_allow_html=True)

        # Image in sidebar and link to mail
        image_loan = Image.open("AI.jpg")
        st.sidebar.image(image_loan, use_column_width=True)
        st.sidebar.markdown(
            """<a class="nav-link" href="mailto: technology.coe@digital.datamatics.com" style="color:white ;" target="_blank">Mail us at - <u>technology.coe@digital.datamatics.com</u></a>""",
            unsafe_allow_html=True)

        # Upload CSV File
        st.header("Upload Input csv file")
        file_upload = st.file_uploader("  ", type=["csv"])


        if file_upload is not None:

            # Selecting Experiment type (Supervised or UnSupervised)
            st.subheader("Select the Experiment type")
            exp_type = st.selectbox(label=' ', options=['Select', 'Supervised', 'UnSupervised'])
            print(exp_type)

            # **************************** Supervised Section ********************************** #
            if exp_type == "Supervised":
                st.subheader("Supervised")

                # read Dataset
                dataset = pd.read_csv(file_upload)

                # read columns
                cols = dataset.columns.tolist()
                st.text(" ")

                # Selecting features to drop
                st.subheader("choose the features which you want to drop")
                drop_features = st.multiselect('', cols)
                # print(drop_features)


                # Selecting target feature
                st.text(" ")
                st.subheader("Pick Your Target feature")
                target_data = st.selectbox(label=' ', options=cols, index=len(cols) - 1)
                # print(target_data)

                # **** Following code is to identify problem type is NLP text classification or Predictive analysis using Input feature **** #
                total_len = len(cols)
                drop_len = len(drop_features)
                problem_statement = ""
                input_feature_temp = ""
                st.sidebar.text(" ")
                sidebar_col1, sidebar_col2, sidebar_col3 = st.sidebar.beta_columns(3)
                if st.checkbox("Check Problem Type"):
                    if (target_data not in drop_features) and ((total_len - drop_len) == 2):
                        temp_data = dataset.drop(drop_features, axis=1)
                        temp_data = temp_data.drop(target_data, axis=1)
                        temp_col = temp_data.columns.tolist()
                        print(temp_data.dtypes[temp_col[0]])
                        if temp_data.dtypes[temp_col[0]] == "object":
                            print("NLP text Classification")
                            html_string = "<button style='border-radius: 12px;algin:center;background-color:#04AA6D;border: none;color: white;padding: 20px;text-align: center;text-decoration: none;display: inline-block;font-size: 16px;margin: 4px 2px;'>NLP Text Classification</button>"
                            sidebar_col2.markdown(html_string, unsafe_allow_html=True)
                            problem_statement = "NLP text Classification"
                            input_feature_temp = temp_col[0]
                        else:
                            html_string = "<button style='border-radius: 12px;algin:center;background-color:#04AA6D;border: none;color: white;padding: 20px;text-align: center;text-decoration: none;display: inline-block;font-size: 16px;margin: 4px 2px;'>Predictive Analytics</button>"
                            sidebar_col2.markdown(html_string, unsafe_allow_html=True)
                            print("Predictive Analytics")
                            problem_statement = "Predictive Analytics"

                    elif (target_data not in drop_features) and ((total_len - drop_len) > 2):
                        html_string = "<button style='border-radius: 12px;algin:center;background-color:#04AA6D;border: none;color: white;padding: 20px;text-align: center;text-decoration: none;display: inline-block;font-size: 16px;margin: 4px 2px;'>Predictive Analytics</button>"
                        sidebar_col2.markdown(html_string, unsafe_allow_html=True)
                        print("Predictive Analytics")
                        problem_statement = "Predictive Analytics"
                    elif (target_data in drop_features):
                        st.error("Selected Target column is also selected to drop.So Can't proceed")
                #******************************************************************************************#


                # *********************** Predictive Analytics Section *************************************#
                if problem_statement == "Predictive Analytics" and problem_statement != "":
                    # ************ Data Analysis Code goes here ********** #
                    final_output = get_details_local(dataset)
                    # print(dataset)
                    st.text(" ")
                    first = dataset.head(10)
                    # last = dataset.tail(10)
                    if st.button("Click here to Analyze Data"):

                        container = st.beta_expander("Data Analysis and visualization Details")
                        # c1,c2=container.beta_columns(2)
                        container.subheader("First 10 Rows")
                        container.write(first)
                        # c2.subheader("Last 10 Rows")
                        # c2.write(last)

                        container.text(" ")

                        overview_con = container.beta_container()
                        overview_con.subheader("Overview of Dataset")
                        overview_con.text(" ")
                        ov_c1, ov_c2, ov_c3 = overview_con.beta_columns(3)
                        ov_c1.write("Statistics")
                        for key, value in final_output['overview']['data_statistics'].items():
                            temp = str(key) + ":  " + str(value)
                            ov_c1.text(temp)
                        ov_c2.write("Variable Info")
                        for key, value in final_output['overview']['variable_type'].items():
                            temp = str(key) + ":  " + str(value)
                            ov_c2.text(temp)
                        ov_c3.write("Reproduction")
                        for key, value in final_output['reproduction'].items():
                            temp = str(key) + ":  " + str(value)
                            ov_c3.text(temp)

                        container.text(" ")
                        numeric_con = container.beta_container()
                        numeric_con.subheader("Numeric Variable Information")
                        numeric_con.text(" ")

                        for key, value in final_output['numerical_variable_info']['variable_info'].items():
                            numeric_con.text(" ")
                            temp_key = "Numeric Column:" + str(key)
                            numeric_con.write(temp_key)
                            num_c1, num_c2, num_c3, num_c4 = numeric_con.beta_columns(4)
                            i = 1
                            for key1, value1 in value.items():
                                temp = str(key1) + ":  " + str(value1)
                                if (i <= 7):
                                    num_c1.text(temp)
                                elif (i > 7 and i <= 14):
                                    num_c2.text(temp)
                                elif (i > 14 and i <= 21):
                                    num_c3.text(temp)
                                elif i > 21 and i <= 24:
                                    num_c4.text(temp)
                                elif i > 24:
                                    numeric_con.plotly_chart(value1, config={'displaylogo': False})
                                i = i + 1

                        container.text(" ")
                        categorical_con = container.beta_container()
                        categorical_con.subheader("Categorical Variable Information")
                        categorical_con.text(" ")

                        for key, value in final_output['categorical_variable_info']['variable_info'].items():
                            categorical_con.text(" ")
                            temp_key = "Categorical Column:" + str(key)
                            categorical_con.write(temp_key)
                            num_c1, num_c2, num_c3, num_c4 = categorical_con.beta_columns(4)
                            i = 1
                            for key1, value1 in value.items():
                                temp = str(key1) + ":  " + str(value1)
                                if (i <= 5):
                                    num_c1.text(temp)
                                elif (i > 5 and i <= 10):
                                    num_c2.text(temp)
                                elif (i > 10 and i <= 15):
                                    num_c3.text(temp)
                                elif i > 15 and i <= 16:
                                    num_c4.text(temp)
                                elif i > 16:
                                    categorical_con.plotly_chart(value1, config={'displaylogo': False})
                                i = i + 1

                        container.text(" ")
                        container.text("Scatter chart Matrix")
                        container.plotly_chart(final_output['scatter_chart_matrix'],config = {'displaylogo': False})
                        container.text(" ")

                        container.text(" ")
                        corr_con = container.beta_container()
                        corr_con.subheader("Correlation Matrix Information")
                        corr_con.text(" ")
                        # corr_c1, corr_c2, corr_c3 = corr_con.beta_columns(3)
                        # j = 0
                        for key1, value1 in final_output['correlation_matrix_info'].items():
                            corr_con.text(" ")
                            corr_con.write(key1)
                            # col.pyplot(value)
                            corr_con.plotly_chart(value1, config={'displaylogo': False})
                            # col.plotly_chart(value1,use_container_width=True)
                            # j=j+1

                        container.text(" ")
                        missing_con = container.beta_container()
                        missing_con.subheader("Missing Values Information")
                        missing_con.text(" ")
                        mis_c1, mis_c2 = missing_con.beta_columns(2)
                        mis_c3, mis_c4 = missing_con.beta_columns(2)
                        k = 0
                        for key, value in final_output['missing_values_info'].items():
                            corr_con.text(" ")
                            col = mis_c1
                            if k == 0:
                                col = mis_c1
                            elif k == 1:
                                col = mis_c2
                            elif k == 2:
                                col = mis_c3
                            elif k == 3:
                                col = mis_c4
                            col.write(key)
                            col.pyplot(value)
                            k = k + 1
                    # ********************************************************#


                    # ******  Option for handling Imbalanced Dataset ******#
                    st.text(" ")
                    ir_res = imbalnce_ratio(dataset, target_data)
                    ir_res = "Imbalance Ratio (" + ir_res + ")"
                    st.subheader("Select below option to Handle Imbalanced Dataset (optional)")
                    st.text(ir_res)
                    balance_data = st.selectbox(label=' ', options=["Auto", "False"])
                    #*******************************************************#


                    #********* Data Cleaning and Model Building code goes here *********#
                    st.text(" ")
                    if (st.checkbox('Start build model') is True) and (target_data not in drop_features):
                        st.text(" ")
                        cleaned_data, steps_dict = clean(dataset, drop_features)
                        sample_data = cleaned_data.head()
                        info['clean_data'] = sample_data
                        info['auto_drop'] = steps_dict['auto_drop']

                        p_type = get_problem_type_local(cleaned_data, target_data)
                        statement_ptype = "Problem type :" + p_type
                        info['problem'] = statement_ptype

                        statement_target = "Target column: " + target_data
                        info['target_statement'] = statement_target
                        info['target'] = target_data

                        model = model_build_local(cleaned_data, target_data, p_type, balance_data, steps_dict)

                        info['model'] = model
                        info['step_dict'] = steps_dict


                    elif target_data in drop_features:
                        st.error("Selected Target column is also selected to drop.So Can't proceed")
                    #**********************************************************************************#


                    # print(info)
                    # ******************* Model Result ***********************#
                    if info:
                        for columns in info['auto_drop']:
                            txt = "automatically dropped column: " + columns
                            st.write(txt)
                        st.text(" ")
                        st.subheader("After Cleaning data")
                        st.write(info['clean_data'])
                        st.write(info['problem'])
                        st.write(info['target_statement'])
                        # print(info['model'])
                        for key, val in info['model'].items():
                            st.text(" ")
                            # if key == "Regression graph" :
                            #     st.write(key)
                            #     st.pyplot(val)
                            if key == "Best pipeline" or key == "step_dict":
                                pass
                            elif key == "ROC Curve" or key == "model_comparison" or key == "Regression graph":
                                st.write(key)
                                st.plotly_chart(val, config={'displaylogo': False})
                            elif key == "Classification Report":
                                st.write(key)
                                st.text(val)
                            elif key == "Handling Imbalanced Dataset":
                                st.write(key)
                                for key1, val1 in val.items():
                                    st.write(key1)
                                    st.text(val1)
                            else:
                                st.write(key)
                                st.write(val)
                                st.text(" ")
                                st.text(" ")
                        # ***************************************************************#

                        # ************************** Prediction **************************#
                        st.subheader("Upload csv file for Predictions : ")
                        file_upload1 = st.file_uploader("   ", type=["csv"])

                        print(file_upload1)

                        if file_upload1 is not None:
                            try:

                                test_data = pd.read_csv(file_upload1)

                                data = test_data.copy()

                                data.drop(info['step_dict']['dropped_features'], axis=1, inplace=True)

                                for col in data.columns:
                                    data[col].fillna(info['step_dict']['missing_values'][col], inplace=True)

                                # print(info['target'])

                                for data1 in info['step_dict']['categorical_to_numeric']:
                                    for key, value in data1.items():
                                        col_name = key.split('_encoded')[0]
                                        if col_name != info['target']:
                                            # print(col_name)
                                            # print(value)
                                            data[col_name].replace(value, inplace=True)

                                if info['target'] in data.columns: data.drop([info['target']], axis=1, inplace=True)

                                final_model = info['model']['Best pipeline']
                                # print(final_model)

                                predictions = final_model.predict(data)
                                # print(predictions)
                                print(len(test_data))
                                print(len(predictions))
                                predict_column_name = info['target'] + "_prediction"
                                test_data[predict_column_name] = predictions
                                for data1 in info['step_dict']['categorical_to_numeric']:
                                    for key, value in data1.items():
                                        col_name = key.split('_encoded')[0]
                                        if col_name == info['target']:
                                            # print(col_name)
                                            # print(value)
                                            d = {}
                                            for i, v in value.items():
                                                d[v] = i
                                            test_data[predict_column_name].replace(d, inplace=True)

                                # csv = test_data.to_csv(index=False)
                                # b64 = base64.b64encode(csv.encode()).decode()  # some strings <-> bytes conversions necessary here
                                # href = f'<a href="data:file/csv;base64,{b64}">Download The Prediction Results CSV File</a> (right-click and save as &lt;some_name&gt;.csv)'

                                csv = test_data.to_csv(index=False)

                                b64 = base64.b64encode(csv.encode()).decode()
                                href = f'<a href="data:file/csv;base64,{b64}" download="download.csv">Download Predicted file</a>'
                                st.markdown(href, unsafe_allow_html=True)

                                output_model = pickle.dumps(final_model)
                                b64 = base64.b64encode(output_model).decode()
                                href = f'<a href="data:file/output_model;base64,{b64}" download="Best_model.pkl">Download Best Model .pkl File</a> '
                                st.markdown(href, unsafe_allow_html=True)
                            except Exception as e:
                                st.text(e)
                                st.error("Uploaded wrong data for prediction")
                        # ***************************************************************************#
                # *********************** End of Predictive Analytics Section *************************************#

                # *********************** NLP text Classification Section *************************************#
                elif problem_statement == "NLP text Classification" and problem_statement != "":
                    try:
                        # ********* Data Analysis and visualization code ************** #
                        st.text(" ")
                        vis_con = st.beta_expander("Data Visualization")
                        st.text(" ")
                        vis_con.subheader("Select Input Feature")
                        select_col = ["Select"]
                        t_cols = select_col + cols
                        input_col = vis_con.selectbox(label=' ', options=t_cols)
                        st.set_option('deprecation.showPyplotGlobalUse', False)
                        res = word_cloud_local(dataset, input_col)
                        if res is not None: vis_con.plotly_chart(res)
                        true_bigrams = plot_ngram_local(dataset, input_col)
                        if true_bigrams is not None: vis_con.plotly_chart(true_bigrams, config={'displaylogo': False})
                        st.text(" ")
                        vis_con.subheader("Select target Feature")
                        tg_col = vis_con.selectbox(label='  ', options=t_cols)
                        plot_res = plotly_target_local(dataset, tg_col)
                        if plot_res is not None: vis_con.plotly_chart(plot_res, config={'displaylogo': False})
                        #*****************************************************************************************#


                        # ******  Option for handling Imbalanced Dataset ****** #
                        input_feature = input_feature_temp
                        st.text(" ")
                        ir_res = imbalnce_ratio(dataset, target_data)
                        ir_res = "Imbalance Ratio (" + ir_res + ")"
                        st.subheader("Select below option to Handle Imbalanced Dataset (optional)")
                        st.text(ir_res)
                        balance_data = st.selectbox(label=' ', options=["Auto", "False"])
                        #***********************************************************#

                        # ********* Data Cleaning and Model Building code goes here *********#
                        st.text(" ")
                        if st.checkbox("Start Build model") and input_feature != target_data:
                            model_info = model_train_local(dataset, input_feature, target_data, balance_data)

                            #************ Model Result ***************#
                            for key, val in model_info.items():
                                st.text(" ")
                                if key == "Classification Report":
                                    st.write(key)
                                    st.text(val)
                                elif key == "model_comparison" or key == "ROC Curve":
                                    st.write(key)
                                    st.plotly_chart(val, config={'displaylogo': False})
                                elif key == "Handling Imbalanced Dataset":
                                    st.write(key)
                                    for key1, val1 in val.items():
                                        st.write(key1)
                                        st.text(val1)
                                elif key == "Best pipeline" or key == "tfidf_vector":
                                    pass
                                else:
                                    st.write(key)
                                    st.write(val)
                            #***********************************************************#

                            # ****************** Prediction ******************* #
                            c1, c2 = st.beta_columns(2)
                            exp1 = c1.beta_expander("Prediction on text data")
                            exp2 = c2.beta_expander("Prediction on csv data")
                            form_predict = exp1.form("predict")
                            text_val = form_predict.text_area("Enter text for prediction")
                            if form_predict.form_submit_button("Predict") and text_val != "":
                                prediction = predict_text(text_val, model_info["Best pipeline"],
                                                          model_info["tfidf_vector"])
                                prediction = "Result :" + str(prediction[0])
                                form_predict.write(prediction)
                            f_up = exp2.file_uploader("predict_csv", type=["csv"])
                            if f_up and exp2.button("Predict"):
                                df = pd.read_csv(f_up, encoding='ISO-8859-1')
                                df_copy = df.copy()
                                predictions = predict_csv(df_copy, model_info["Best pipeline"],
                                                          model_info["tfidf_vector"], input_feature)
                                predict_column_name = target_data + "_prediction"
                                df[predict_column_name] = predictions

                                csv = df.to_csv(index=False)

                                b64 = base64.b64encode(csv.encode()).decode()
                                href = f'<a href="data:file/csv;base64,{b64}" download="download.csv">Download Predicted file</a>'
                                exp2.markdown(href, unsafe_allow_html=True)

                                output_model = pickle.dumps(model_info["Best pipeline"])
                                b64 = base64.b64encode(output_model).decode()
                                href = f'<a href="data:file/output_model;base64,{b64}" download="Best_model.pkl">Download Best Model .pkl File</a> '
                                exp2.markdown(href, unsafe_allow_html=True)
                                print("completed")


                            elif target_data == input_feature:
                                st.error("Input feature and target data cannot be same")
                    except Exception as e:
                        st.error(e)
                        st.error("Something went wrong")
                        # ****************************************************** #
                # *********************** End of NLP text Classification Section *************************************#
            # *************************  End of Supervised Section **************************************************#


            # **************************** UnSupervised Section (In Progress) ********************************** #
            elif exp_type == "UnSupervised":
                st.subheader("UnSupervised")

                # ************ Data Analysis Code goes here ********** #
                dataset = pd.read_csv(file_upload)
                final_output = get_details_local(dataset)
                cols = dataset.columns.tolist()
                # print(dataset)
                st.text(" ")
                first = dataset.head(10)
                # last = dataset.tail(10)
                if st.button("Click here to Analyze Data"):

                    container = st.beta_expander("Data Analysis and visualization Details")
                    # c1,c2=container.beta_columns(2)
                    container.subheader("First 10 Rows")
                    container.write(first)
                    # c2.subheader("Last 10 Rows")
                    # c2.write(last)

                    container.text(" ")

                    overview_con = container.beta_container()
                    overview_con.subheader("Overview of Dataset")
                    overview_con.text(" ")
                    ov_c1, ov_c2, ov_c3 = overview_con.beta_columns(3)
                    ov_c1.write("Statistics")
                    for key, value in final_output['overview']['data_statistics'].items():
                        temp = str(key) + ":  " + str(value)
                        ov_c1.text(temp)
                    ov_c2.write("Variable Info")
                    for key, value in final_output['overview']['variable_type'].items():
                        temp = str(key) + ":  " + str(value)
                        ov_c2.text(temp)
                    ov_c3.write("Reproduction")
                    for key, value in final_output['reproduction'].items():
                        temp = str(key) + ":  " + str(value)
                        ov_c3.text(temp)

                    container.text(" ")
                    numeric_con = container.beta_container()
                    numeric_con.subheader("Numeric Variable Information")
                    numeric_con.text(" ")

                    for key, value in final_output['numerical_variable_info']['variable_info'].items():
                        numeric_con.text(" ")
                        temp_key = "Numeric Column:" + str(key)
                        numeric_con.write(temp_key)
                        num_c1, num_c2, num_c3, num_c4 = numeric_con.beta_columns(4)
                        i = 1
                        for key1, value1 in value.items():
                            temp = str(key1) + ":  " + str(value1)
                            if (i <= 7):
                                num_c1.text(temp)
                            elif (i > 7 and i <= 14):
                                num_c2.text(temp)
                            elif (i > 14 and i <= 21):
                                num_c3.text(temp)
                            elif i > 21 and i <= 24:
                                num_c4.text(temp)
                            elif i > 24:
                                numeric_con.plotly_chart(value1, config={'displaylogo': False})
                            i = i + 1

                    container.text(" ")
                    categorical_con = container.beta_container()
                    categorical_con.subheader("Categorical Variable Information")
                    categorical_con.text(" ")

                    for key, value in final_output['categorical_variable_info']['variable_info'].items():
                        categorical_con.text(" ")
                        temp_key = "Categorical Column:" + str(key)
                        categorical_con.write(temp_key)
                        num_c1, num_c2, num_c3, num_c4 = categorical_con.beta_columns(4)
                        i = 1
                        for key1, value1 in value.items():
                            temp = str(key1) + ":  " + str(value1)
                            if (i <= 5):
                                num_c1.text(temp)
                            elif (i > 5 and i <= 10):
                                num_c2.text(temp)
                            elif (i > 10 and i <= 15):
                                num_c3.text(temp)
                            elif i > 15 and i <= 16:
                                num_c4.text(temp)
                            elif i > 16:
                                categorical_con.plotly_chart(value1, config={'displaylogo': False})
                            i = i + 1

                    container.text(" ")
                    container.text("Scatter chart Matrix")
                    container.plotly_chart(final_output['scatter_chart_matrix'],config = {'displaylogo': False})
                    container.text(" ")

                    container.text(" ")
                    corr_con = container.beta_container()
                    corr_con.subheader("Correlation Matrix Information")
                    corr_con.text(" ")
                    # corr_c1, corr_c2, corr_c3 = corr_con.beta_columns(3)
                    # j = 0
                    for key1, value1 in final_output['correlation_matrix_info'].items():
                        corr_con.text(" ")
                        corr_con.write(key1)
                        # col.pyplot(value)
                        corr_con.plotly_chart(value1, config={'displaylogo': False})
                        # col.plotly_chart(value1,use_container_width=True)
                        # j=j+1

                    container.text(" ")
                    missing_con = container.beta_container()
                    missing_con.subheader("Missing Values Information")
                    missing_con.text(" ")
                    mis_c1, mis_c2 = missing_con.beta_columns(2)
                    mis_c3, mis_c4 = missing_con.beta_columns(2)
                    k = 0
                    for key, value in final_output['missing_values_info'].items():
                        corr_con.text(" ")
                        col = mis_c1
                        if k == 0:
                            col = mis_c1
                        elif k == 1:
                            col = mis_c2
                        elif k == 2:
                            col = mis_c3
                        elif k == 3:
                            col = mis_c4
                        col.write(key)
                        col.pyplot(value)
                        k = k + 1

                # ********************************************************#

                # *********** Selecting Model for clustering ***********#
                st.subheader("Select the Model")
                model = st.selectbox(label=' ', options=['Select', 'KMeans'])
                #********************************************************#

                # ******* Data cleaning and checking with elbow technique using Kmeans clustering *******#
                if model == "KMeans":
                    st.text(" ")
                    st.subheader("choose the features which you want to drop")
                    drop_features = st.multiselect('', cols)

                    st.text(" ")
                    cleaned_data, steps_dict = clean(dataset, drop_features)
                    sample_data = cleaned_data.head()
                    info['clean_data'] = sample_data
                    info['auto_drop'] = steps_dict['auto_drop']
                    val1 = k_means(dataset, cols, drop_features, sample_data)
                    st.write("Elbow-Curve")
                    st.plotly_chart(val1, config={'displaylogo': False})
                #                     st.write("Silhouette-Score")
                #                     st.plotly_chart(val2,  config={'displaylogo': False})

                # ******************************************************************************* #

                else:
                    pass

            # **************************** End of UnSupervised Section ********************************** #

    except Exception as e:
        st.header(e)


if __name__ == '__main__':
    main()