Spaces:
Build error
Build error
File size: 7,927 Bytes
ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 ae97c0d ba0d063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from transformers import OwlViTProcessor, OwlViTForObjectDetection
import gc
models = {
'vit_b': './checkpoints/sam_vit_b_01ec64.pth',
'vit_l': './checkpoints/sam_vit_l_0b3195.pth',
'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
}
image_examples = [
[os.path.join(os.path.dirname(__file__), "./images/53960-scaled.jpg"), 0, []],
[os.path.join(os.path.dirname(__file__), "./images/2388455-scaled.jpg"), 1, []],
[os.path.join(os.path.dirname(__file__), "./images/1.jpg"),2,[]],
[os.path.join(os.path.dirname(__file__), "./images/2.jpg"),3,[]],
[os.path.join(os.path.dirname(__file__), "./images/3.jpg"),4,[]],
[os.path.join(os.path.dirname(__file__), "./images/4.jpg"),5,[]],
[os.path.join(os.path.dirname(__file__), "./images/5.jpg"),6,[]],
[os.path.join(os.path.dirname(__file__), "./images/6.jpg"),7,[]],
[os.path.join(os.path.dirname(__file__), "./images/7.jpg"),8,[]],
[os.path.join(os.path.dirname(__file__), "./images/8.jpg"),9,[]]
]
def plot_boxes(img, boxes):
img_pil = Image.fromarray(np.uint8(img * 255)).convert('RGB')
draw = ImageDraw.Draw(img_pil)
for box in boxes:
color = tuple(np.random.randint(0, 255, size=3).tolist())
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
return img_pil
def segment_one(img, mask_generator, seed=None):
if seed is not None:
np.random.seed(seed)
masks = mask_generator.generate(img)
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
mask_all = np.ones((img.shape[0], img.shape[1], 3))
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[m == True, i] = color_mask[i]
result = img / 255 * 0.3 + mask_all * 0.7
return result, mask_all
def generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh,
input_x, progress=gr.Progress()):
# sam model
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
mask_generator = SamAutomaticMaskGenerator(
sam,
points_per_side=points_per_side,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
stability_score_offset=stability_score_offset,
box_nms_thresh=box_nms_thresh,
crop_n_layers=crop_n_layers,
crop_nms_thresh=crop_nms_thresh,
crop_overlap_ratio=512 / 1500,
crop_n_points_downscale_factor=1,
point_grids=None,
min_mask_region_area=min_mask_region_area,
output_mode='binary_mask'
)
# input is image, type: numpy
if type(input_x) == np.ndarray:
result, mask_all = segment_one(input_x, mask_generator)
return result, mask_all
elif isinstance(input_x, str): # input is video, type: path (str)
cap = cv2.VideoCapture(input_x) # read video
frames_num = cap.get(cv2.CAP_PROP_FRAME_COUNT)
W, H = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
out = cv2.VideoWriter("output.mp4", cv2.VideoWriter_fourcc('x', '2', '6', '4'), fps, (W, H), isColor=True)
for _ in progress.tqdm(range(int(frames_num)),
desc='Processing video ({} frames, size {}x{})'.format(int(frames_num), W, H)):
ret, frame = cap.read() # read a frame
result, mask_all = segment_one(frame, mask_generator, seed=2023)
result = (result * 255).astype(np.uint8)
out.write(result)
out.release()
cap.release()
return 'output.mp4'
def predictor_inference(device, model_type, input_x, input_text, selected_points, owl_vit_threshold=0.1):
# sam model
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
predictor = SamPredictor(sam)
predictor.set_image(input_x) # Process the image to produce an image embedding
if input_text != '':
# split input text
input_text = [input_text.split(',')]
print(input_text)
# OWL-ViT model
processor = OwlViTProcessor.from_pretrained('./checkpoints/models--google--owlvit-base-patch32')
owlvit_model = OwlViTForObjectDetection.from_pretrained("./checkpoints/models--google--owlvit-base-patch32").to(device)
# get outputs
input_text = processor(text=input_text, images=input_x, return_tensors="pt").to(device)
outputs = owlvit_model(**input_text)
target_size = torch.Tensor([input_x.shape[:2]]).to(device)
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_size,
threshold=owl_vit_threshold)
# get the box with best score
scores = torch.sigmoid(outputs.logits)
# best_scores, best_idxs = torch.topk(scores, k=1, dim=1)
# best_idxs = best_idxs.squeeze(1).tolist()
i = 0 # Retrieve predictions for the first image for the corresponding text queries
boxes_tensor = results[i]["boxes"] # [best_idxs]
boxes = boxes_tensor.cpu().detach().numpy()
# boxes = boxes[np.newaxis, :, :]
transformed_boxes = predictor.transform.apply_boxes_torch(torch.Tensor(boxes).to(device),
input_x.shape[:2]) # apply transform to original boxes
# transformed_boxes = transformed_boxes.unsqueeze(0)
print(transformed_boxes.size(), boxes.shape)
else:
transformed_boxes = None
# points
if len(selected_points) != 0:
points = torch.Tensor([p for p, _ in selected_points]).to(device).unsqueeze(1)
labels = torch.Tensor([int(l) for _, l in selected_points]).to(device).unsqueeze(1)
transformed_points = predictor.transform.apply_coords_torch(points, input_x.shape[:2])
print(points.size(), transformed_points.size(), labels.size(), input_x.shape, points)
else:
transformed_points, labels = None, None
# predict segmentation according to the boxes
masks, scores, logits = predictor.predict_torch(
point_coords=transformed_points,
point_labels=labels,
boxes=transformed_boxes, # only one box
multimask_output=False,
)
masks = masks.cpu().detach().numpy()
mask_all = np.ones((input_x.shape[0], input_x.shape[1], 3))
for ann in masks:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[ann[0] == True, i] = color_mask[i]
img = input_x / 255 * 0.3 + mask_all * 0.7
if input_text != '':
img = plot_boxes(img, boxes_tensor) # image + mask + boxes
# free the memory
if input_text != '':
owlvit_model.cpu()
del owlvit_model
del input_text
gc.collect()
torch.cuda.empty_cache()
return img, mask_all
def run_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh, owl_vit_threshold, input_x,
input_text, selected_points):
# if input_x is int, the image is selected from examples
if isinstance(input_x, int):
input_x = cv2.imread(image_examples[input_x][0])
input_x = cv2.cvtColor(input_x, cv2.COLOR_BGR2RGB)
if (input_text != '' and not isinstance(input_x, str)) or len(selected_points) != 0: # user input text or points
print('use predictor_inference')
print('prompt text: ', input_text)
print('prompt points length: ', len(selected_points))
return predictor_inference(device, model_type, input_x, input_text, selected_points, owl_vit_threshold)
else:
print('use generator_inference')
return generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
crop_nms_thresh, input_x)
|