Spaces:
Running
on
L4
Running
on
L4
File size: 13,728 Bytes
d4733f5 79ecf3f d4733f5 79ecf3f d4733f5 19cf0e0 9b2c724 19cf0e0 d4733f5 19cf0e0 573e173 19cf0e0 d4733f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import subprocess
import shlex
subprocess.run(
shlex.split(
"pip install ./gradio_magicquill-0.0.1-py3-none-any.whl"
)
)
import gradio as gr
from gradio_magicquill import MagicQuill
import random
import torch
import numpy as np
from PIL import Image, ImageOps
import base64
import io
from fastapi import FastAPI, Request
import uvicorn
from MagicQuill import folder_paths
from MagicQuill.scribble_color_edit import ScribbleColorEditModel
from gradio_client import Client, handle_file
from huggingface_hub import snapshot_download
import tempfile
import cv2
import os
import requests
snapshot_download(repo_id="LiuZichen/MagicQuill-models", repo_type="model", local_dir="models")
HF_TOKEN = os.environ.get("HF_TOKEN")
client = Client("LiuZichen/DrawNGuess", hf_token=HF_TOKEN)
scribbleColorEditModel = ScribbleColorEditModel()
def tensor_to_numpy(tensor):
if isinstance(tensor, torch.Tensor):
return (tensor.detach().cpu().numpy() * 255).astype(np.uint8)
return tensor
def tensor_to_base64(tensor):
tensor = tensor.squeeze(0) * 255.
pil_image = Image.fromarray(tensor.cpu().byte().numpy())
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def read_base64_image(base64_image):
if base64_image.startswith("data:image/png;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/jpeg;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/webp;base64,"):
base64_image = base64_image.split(",")[1]
else:
raise ValueError("Unsupported image format.")
image_data = base64.b64decode(base64_image)
image = Image.open(io.BytesIO(image_data))
image = ImageOps.exif_transpose(image)
return image
def create_alpha_mask(base64_image):
"""Create an alpha mask from the alpha channel of an image."""
image = read_base64_image(base64_image)
mask = torch.zeros((1, image.height, image.width), dtype=torch.float32, device="cpu")
if 'A' in image.getbands():
alpha_channel = np.array(image.getchannel('A')).astype(np.float32) / 255.0
mask[0] = 1.0 - torch.from_numpy(alpha_channel)
return mask
def load_and_preprocess_image(base64_image, convert_to='RGB', has_alpha=False):
"""Load and preprocess a base64 image."""
image = read_base64_image(base64_image)
image = image.convert(convert_to)
image_array = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_array)[None,]
return image_tensor
def load_and_resize_image(base64_image, convert_to='RGB', max_size=512):
"""Load and preprocess a base64 image, resize if necessary."""
image = read_base64_image(base64_image)
image = image.convert(convert_to)
width, height = image.size
# if min(width, height) > max_size:
scaling_factor = max_size / min(width, height)
new_size = (int(width * scaling_factor), int(height * scaling_factor))
image = image.resize(new_size, Image.LANCZOS)
image_array = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_array)[None,]
return image_tensor
def prepare_images_and_masks(total_mask, original_image, add_color_image, add_edge_image, remove_edge_image):
total_mask = create_alpha_mask(total_mask)
original_image_tensor = load_and_preprocess_image(original_image)
if add_color_image:
add_color_image_tensor = load_and_preprocess_image(add_color_image)
else:
add_color_image_tensor = original_image_tensor
add_edge_mask = create_alpha_mask(add_edge_image) if add_edge_image else torch.zeros_like(total_mask)
remove_edge_mask = create_alpha_mask(remove_edge_image) if remove_edge_image else torch.zeros_like(total_mask)
return add_color_image_tensor, original_image_tensor, total_mask, add_edge_mask, remove_edge_mask
def guess_prompt_handler(original_image, add_color_image, add_edge_image):
original_image_tensor = load_and_preprocess_image(original_image)
if add_color_image:
add_color_image_tensor = load_and_preprocess_image(add_color_image)
else:
add_color_image_tensor = original_image_tensor
width, height = original_image_tensor.shape[1], original_image_tensor.shape[2]
add_edge_mask = create_alpha_mask(add_edge_image) if add_edge_image else torch.zeros((1, height, width), dtype=torch.float32, device="cpu")
original_image_numpy = tensor_to_numpy(original_image_tensor.squeeze(0))
add_color_image_numpy = tensor_to_numpy(add_color_image_tensor.squeeze(0))
add_edge_mask_numpy = tensor_to_numpy(add_edge_mask.squeeze(0).unsqueeze(-1))
original_image_numpy = cv2.cvtColor(original_image_numpy, cv2.COLOR_RGB2BGR)
add_color_image_numpy = cv2.cvtColor(add_color_image_numpy, cv2.COLOR_RGB2BGR)
original_image_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b')
add_color_image_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b')
add_edge_mask_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b')
cv2.imwrite(original_image_file.name, original_image_numpy)
cv2.imwrite(add_color_image_file.name, add_color_image_numpy)
cv2.imwrite(add_edge_mask_file.name, add_edge_mask_numpy)
original_image_file.close()
add_color_image_file.close()
add_edge_mask_file.close()
res = client.predict(
handle_file(original_image_file.name),
handle_file(add_color_image_file.name),
handle_file(add_edge_mask_file.name)
)
if original_image_file and os.path.exists(original_image_file.name):
os.remove(original_image_file.name)
if add_color_image_file and os.path.exists(add_color_image_file.name):
os.remove(add_color_image_file.name)
if add_edge_mask_file and os.path.exists(add_edge_mask_file.name):
os.remove(add_edge_mask_file.name)
return res
def generate(ckpt_name, total_mask, original_image, add_color_image, add_edge_image, remove_edge_image, positive_prompt, negative_prompt, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
add_color_image, original_image, total_mask, add_edge_mask, remove_edge_mask = prepare_images_and_masks(total_mask, original_image, add_color_image, add_edge_image, remove_edge_image)
progress = None
if fine_edge == 'disable':
if torch.sum(remove_edge_mask).item() > 0 and torch.sum(add_edge_mask).item() == 0:
if positive_prompt == "":
positive_prompt = "empty scene"
edge_strength /= 3.
latent_samples, final_image, lineart_output, color_output = scribbleColorEditModel.process(
ckpt_name,
original_image,
add_color_image,
positive_prompt,
negative_prompt,
total_mask,
add_edge_mask,
remove_edge_mask,
grow_size,
stroke_as_edge,
fine_edge,
edge_strength,
color_strength,
inpaint_strength,
seed,
steps,
cfg,
sampler_name,
scheduler,
progress
)
final_image_base64 = tensor_to_base64(final_image)
return final_image_base64
def generate_image_handler(x, ckpt_name, negative_prompt, fine_edge, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
if seed == -1:
seed = random.randint(0, 2**32 - 1)
ms_data = x['from_frontend']
positive_prompt = x['from_backend']['prompt']
stroke_as_edge = "enable"
res = generate(ckpt_name, ms_data['total_mask'], ms_data['original_image'], ms_data['add_color_image'], ms_data['add_edge_image'], ms_data['remove_edge_image'], positive_prompt, negative_prompt, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler)
x["from_backend"]["generated_image"] = res
return x
css = '''
.row {
width: 90%;
margin: auto;
}
'''
with gr.Blocks(css=css) as demo:
with gr.Row(elem_classes="row"):
text = gr.Markdown(
"""
# Welcome to MagicQuill!
Click the [link](https://magicquill.art) to view our demo and tutorial.
""")
with gr.Row(elem_classes="row"):
ms = MagicQuill()
with gr.Row(elem_classes="row"):
with gr.Column():
btn = gr.Button("Run", variant="primary")
with gr.Column():
with gr.Accordion("parameters", open=False):
ckpt_name = gr.Dropdown(
label="Base Model Name",
choices=folder_paths.get_filename_list("checkpoints"),
value='SD1.5/realisticVisionV60B1_v51VAE.safetensors',
interactive=True
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="",
interactive=True
)
# stroke_as_edge = gr.Radio(
# label="Stroke as Edge",
# choices=['enable', 'disable'],
# value='enable',
# interactive=True
# )
fine_edge = gr.Radio(
label="Fine Edge",
choices=['enable', 'disable'],
value='disable',
interactive=True
)
grow_size = gr.Slider(
label="Grow Size",
minimum=0,
maximum=100,
value=15,
step=1,
interactive=True
)
edge_strength = gr.Slider(
label="Edge Strength",
minimum=0.0,
maximum=5.0,
value=0.6,
step=0.01,
interactive=True
)
color_strength = gr.Slider(
label="Color Strength",
minimum=0.0,
maximum=5.0,
value=0.6,
step=0.01,
interactive=True
)
inpaint_strength = gr.Slider(
label="Inpaint Strength",
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.01,
interactive=True
)
seed = gr.Number(
label="Seed",
value=-1,
precision=0,
interactive=True
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
value=20,
step=1,
interactive=True
)
cfg = gr.Slider(
label="CFG",
minimum=0.0,
maximum=20.0,
value=5.0,
step=0.1,
interactive=True
)
sampler_name = gr.Dropdown(
label="Sampler Name",
choices=["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ddim", "uni_pc", "uni_pc_bh2"],
value='euler_ancestral',
interactive=True
)
scheduler = gr.Dropdown(
label="Scheduler",
choices=["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"],
value='karras',
interactive=True
)
btn.click(generate_image_handler, inputs=[ms, ckpt_name, negative_prompt, fine_edge, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler], outputs=ms, concurrency_limit=1)
with gr.Row(elem_classes="row"):
text = gr.Markdown(
"""
Note: This demo is governed by the license of CC BY-NC 4.0 We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受CC BY-NC的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)
""")
demo.queue(max_size=20, status_update_rate=0.1)
app = FastAPI()
@app.post("/magic_quill/guess_prompt")
async def guess_prompt(request: Request):
data = await request.json()
res = guess_prompt_handler(data['original_image'], data['add_color_image'], data['add_edge_image'])
return res
@app.post("/magic_quill/process_background_img")
async def process_background_img(request: Request):
img = await request.json()
resized_img_tensor = load_and_resize_image(img)
resized_img_base64 = "data:image/png;base64," + tensor_to_base64(resized_img_tensor)
# add more processing here
return resized_img_base64
app = gr.mount_gradio_app(app, demo, "/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# demo.launch() |