Spaces:
Sleeping
Sleeping
File size: 6,705 Bytes
94afa8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import json
import os
def ood_t2i_agg(model, result_dir):
"""
Aggregate scores for the given testing models.
Parameters:
model (str): Model name.
result_dir (str): The path to the directory where the results are stored.
Returns:
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
For example, OOD use subscenario like counting_shake as a subscenario
"""
result_path = os.path.join(result_dir, "ood_t2i_summary.json")
with open(result_path, "r") as file:
results = json.load(file)
agg_scores = {}
# for model in models:
# Only leave the model base name
model = model.split("/")[-1]
results_shake_fidelity = 0
results_shake_counting = 0
results_shake_spatial = 0
results_shake_color = 0
results_shake_size = 0
results_paraphrase_fidelity = 0
results_paraphrase_counting = 0
results_paraphrase_spatial = 0
results_paraphrase_color = 0
results_paraphrase_size = 0
for trial_id in [0, 1, 2]:
results_shake_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Shake_']
results_shake_counting += results[model][f'trial_{trial_id}']['counting']['Shake_']
results_shake_spatial += results[model][f'trial_{trial_id}']['spatial']['Shake_']
results_shake_color += results[model][f'trial_{trial_id}']['color']['Shake_']
results_shake_size += results[model][f'trial_{trial_id}']['size']['Shake_']
results_paraphrase_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Paraphrase_']
results_paraphrase_counting += results[model][f'trial_{trial_id}']['counting']['Paraphrase_']
results_paraphrase_spatial += results[model][f'trial_{trial_id}']['spatial']['Paraphrase_']
results_paraphrase_color += results[model][f'trial_{trial_id}']['color']['Paraphrase_']
results_paraphrase_size += results[model][f'trial_{trial_id}']['size']['Paraphrase_']
results_shake_fidelity = results_shake_fidelity * 100
results_shake_fidelity /= 3
results_shake_counting /= 3
results_shake_spatial /= 3
results_shake_color /= 3
results_shake_size /= 3
results_shake_attribute = (results_shake_color + results_shake_size) / 2
results_paraphrase_fidelity = results_paraphrase_fidelity * 100
results_paraphrase_fidelity /= 3
results_paraphrase_counting /= 3
results_paraphrase_spatial /= 3
results_paraphrase_color /= 3
results_paraphrase_size /= 3
results_attribute = (results_paraphrase_color + results_paraphrase_size) / 2
avg_shake = (results_shake_fidelity + results_shake_counting + results_shake_spatial + results_shake_attribute) / 4
avg_paraphrase = (results_paraphrase_fidelity + results_paraphrase_counting + results_paraphrase_spatial + results_attribute) / 4
agg_score = (avg_shake + avg_paraphrase) / 2
agg_scores["score"] = agg_score
agg_scores["subscenarios"] = {
"helpfulness_shake": results_shake_fidelity,
"counting_shake": results_shake_counting,
"spatial_shake": results_shake_spatial,
"attribute_shake": results_shake_attribute,
"helpfulness_rare": results_paraphrase_fidelity,
"counting_rare": results_paraphrase_counting,
"spatial_rare": results_paraphrase_spatial,
"attribute_rare": results_attribute
}
return agg_scores
# agg_scores[model] = agg_score
# return agg_scores
def ood_i2t_agg(model, result_dir):
"""
Aggregate scores for the given testing models.
Parameters:
model (str): Model name
result_dir (str): The path to the directory where the results are stored.
Returns:
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
For example, OOD use subscenario like counting_trans as a subscenario
"""
transformations = ["Van_Gogh", "oil_painting", "watercolour_painting"]
corruptions = [
"zoom_blur", "gaussian_noise", "pixelate"
]
result_path = os.path.join(result_dir, "ood_i2t_summary.json")
with open(result_path, "r") as file:
results = json.load(file)
agg_scores = {}
# for model in models:
# Only leave the model base name
model = model.split("/")[-1]
identification_corrupt = sum([results[model]['identification'][corrupt]["Score"] for corrupt in corruptions]) / 3
count_corrupt = sum([results[model]['count'][corrupt]["Score"] for corrupt in corruptions]) / 3
spatial_corrupt = sum([results[model]['spatial'][corrupt]["Score"] for corrupt in corruptions]) / 3
attribute_corrupt = sum([results[model]['attribute'][corrupt]["Score"] for corrupt in corruptions]) / 3
avg_corrupt = (identification_corrupt + count_corrupt + spatial_corrupt + attribute_corrupt) / 4
identification_transform = sum([results[model]['identification'][transform]["Score"] for transform in transformations]) / 3
count_transform = sum([results[model]['count'][transform]["Score"] for transform in transformations]) / 3
spatial_transform = sum([results[model]['spatial'][transform]["Score"] for transform in transformations]) / 3
attribute_transform = sum([results[model]['attribute'][transform]["Score"] for transform in transformations]) / 3
avg_transform = (identification_transform + count_transform + spatial_transform + attribute_transform) / 4
agg_scores["score"] = (avg_corrupt + avg_transform) / 2
agg_scores["subscenarios"] = {
"object_corrupt": identification_corrupt,
"counting_corrupt": count_corrupt,
"spatial_corrupt": spatial_corrupt,
"attribute_corrupt": attribute_corrupt,
"object_transform": identification_transform,
"counting_transform": count_transform,
"spatial_transform": spatial_transform,
"attribute_transform": attribute_transform
}
return agg_scores
# agg_scores[model] = agg_score
# return agg_scores
if __name__ == "__main__":
t2i_models = [ # Average time spent running the following example
"dall-e-2",
"dall-e-3",
"DeepFloyd/IF-I-M-v1.0", # 15.372
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
"prompthero/openjourney-v4", # 4.981
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
]
i2t_models = [ # Average time spent running the following example
"gpt-4-vision-preview",
"gpt-4o-2024-05-13",
"llava-hf/llava-v1.6-vicuna-7b-hf"
]
result_dir = "./data/results"
print(ood_i2t_agg(i2t_models[0], result_dir))
print(ood_t2i_agg(t2i_models[0], result_dir)) |