Spaces:
Running
Running
File size: 47,781 Bytes
e90f765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
import os,shutil,sys,pdb,re
now_dir = os.getcwd()
sys.path.insert(0, now_dir)
import json,yaml,warnings,torch
import platform
import psutil
import signal
warnings.filterwarnings("ignore")
torch.manual_seed(233333)
tmp = os.path.join(now_dir, "TEMP")
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
if(os.path.exists(tmp)):
for name in os.listdir(tmp):
if(name=="jieba.cache"):continue
path="%s/%s"%(tmp,name)
delete=os.remove if os.path.isfile(path) else shutil.rmtree
try:
delete(path)
except Exception as e:
print(str(e))
pass
import site
site_packages_roots = []
for path in site.getsitepackages():
if "packages" in path:
site_packages_roots.append(path)
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
os.environ["all_proxy"] = ""
for site_packages_root in site_packages_roots:
if os.path.exists(site_packages_root):
try:
with open("%s/users.pth" % (site_packages_root), "w") as f:
f.write(
"%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
% (now_dir, now_dir, now_dir, now_dir, now_dir)
)
break
except PermissionError:
pass
from tools import my_utils
import traceback
import shutil
import pdb
import gradio as gr
from subprocess import Popen
import signal
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
from scipy.io import wavfile
from tools.my_utils import load_audio
from multiprocessing import cpu_count
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
n_cpu=cpu_count()
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
# 判断是否有能用来训练和加速推理的N卡
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
# A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
# # 判断是否支持mps加速
# if torch.backends.mps.is_available():
# if_gpu_ok = True
# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
if if_gpu_ok and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = ("%s\t%s" % ("0", "CPU"))
gpu_infos.append("%s\t%s" % ("0", "CPU"))
default_batch_size = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2)
gpus = "-".join([i[0] for i in gpu_infos])
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
def get_weights_names():
SoVITS_names = [pretrained_sovits_name]
for name in os.listdir(SoVITS_weight_root):
if name.endswith(".pth"):SoVITS_names.append(name)
GPT_names = [pretrained_gpt_name]
for name in os.listdir(GPT_weight_root):
if name.endswith(".ckpt"): GPT_names.append(name)
return SoVITS_names,GPT_names
SoVITS_weight_root="SoVITS_weights"
GPT_weight_root="GPT_weights"
os.makedirs(SoVITS_weight_root,exist_ok=True)
os.makedirs(GPT_weight_root,exist_ok=True)
SoVITS_names,GPT_names = get_weights_names()
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split('(\d+)', s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def change_choices():
SoVITS_names, GPT_names = get_weights_names()
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
p_label=None
p_uvr5=None
p_asr=None
p_denoise=None
p_tts_inference=None
def kill_proc_tree(pid, including_parent=True):
try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
# Process already terminated
return
children = parent.children(recursive=True)
for child in children:
try:
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
if including_parent:
try:
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
system=platform.system()
def kill_process(pid):
if(system=="Windows"):
cmd = "taskkill /t /f /pid %s" % pid
os.system(cmd)
else:
kill_proc_tree(pid)
def change_label(if_label,path_list):
global p_label
if(if_label==True and p_label==None):
path_list=my_utils.clean_path(path_list)
cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
yield i18n("打标工具WebUI已开启")
print(cmd)
p_label = Popen(cmd, shell=True)
elif(if_label==False and p_label!=None):
kill_process(p_label.pid)
p_label=None
yield i18n("打标工具WebUI已关闭")
def change_uvr5(if_uvr5):
global p_uvr5
if(if_uvr5==True and p_uvr5==None):
cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
yield i18n("UVR5已开启")
print(cmd)
p_uvr5 = Popen(cmd, shell=True)
elif(if_uvr5==False and p_uvr5!=None):
kill_process(p_uvr5.pid)
p_uvr5=None
yield i18n("UVR5已关闭")
def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
global p_tts_inference
if(if_tts==True and p_tts_inference==None):
os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
os.environ["cnhubert_base_path"]=cnhubert_base_path
os.environ["bert_path"]=bert_path
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number
os.environ["is_half"]=str(is_half)
os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
os.environ["is_share"]=str(is_share)
cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec)
yield i18n("TTS推理进程已开启")
print(cmd)
p_tts_inference = Popen(cmd, shell=True)
elif(if_tts==False and p_tts_inference!=None):
kill_process(p_tts_inference.pid)
p_tts_inference=None
yield i18n("TTS推理进程已关闭")
from tools.asr.config import asr_dict
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
global p_asr
if(p_asr==None):
asr_inp_dir=my_utils.clean_path(asr_inp_dir)
asr_opt_dir=my_utils.clean_path(asr_opt_dir)
cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
cmd += f' -i "{asr_inp_dir}"'
cmd += f' -o "{asr_opt_dir}"'
cmd += f' -s {asr_model_size}'
cmd += f' -l {asr_lang}'
cmd += " -p %s"%("float16"if is_half==True else "float32")
yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
print(cmd)
p_asr = Popen(cmd, shell=True)
p_asr.wait()
p_asr=None
yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
# return None
def close_asr():
global p_asr
if(p_asr!=None):
kill_process(p_asr.pid)
p_asr=None
return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
def open_denoise(denoise_inp_dir, denoise_opt_dir):
global p_denoise
if(p_denoise==None):
denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")
yield "语音降噪任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
print(cmd)
p_denoise = Popen(cmd, shell=True)
p_denoise.wait()
p_denoise=None
yield f"语音降噪任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
# return None
def close_denoise():
global p_denoise
if(p_denoise!=None):
kill_process(p_denoise.pid)
p_denoise=None
return "已终止语音降噪进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
p_train_SoVITS=None
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
global p_train_SoVITS
if(p_train_SoVITS==None):
with open("GPT_SoVITS/configs/s2.json")as f:
data=f.read()
data=json.loads(data)
s2_dir="%s/%s"%(exp_root,exp_name)
os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
if(is_half==False):
data["train"]["fp16_run"]=False
batch_size=max(1,batch_size//2)
data["train"]["batch_size"]=batch_size
data["train"]["epochs"]=total_epoch
data["train"]["text_low_lr_rate"]=text_low_lr_rate
data["train"]["pretrained_s2G"]=pretrained_s2G
data["train"]["pretrained_s2D"]=pretrained_s2D
data["train"]["if_save_latest"]=if_save_latest
data["train"]["if_save_every_weights"]=if_save_every_weights
data["train"]["save_every_epoch"]=save_every_epoch
data["train"]["gpu_numbers"]=gpu_numbers1Ba
data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
data["save_weight_dir"]=SoVITS_weight_root
data["name"]=exp_name
tmp_config_path="%s/tmp_s2.json"%tmp
with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
print(cmd)
p_train_SoVITS = Popen(cmd, shell=True)
p_train_SoVITS.wait()
p_train_SoVITS=None
yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
def close1Ba():
global p_train_SoVITS
if(p_train_SoVITS!=None):
kill_process(p_train_SoVITS.pid)
p_train_SoVITS=None
return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
p_train_GPT=None
def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
global p_train_GPT
if(p_train_GPT==None):
with open("GPT_SoVITS/configs/s1longer.yaml")as f:
data=f.read()
data=yaml.load(data, Loader=yaml.FullLoader)
s1_dir="%s/%s"%(exp_root,exp_name)
os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
if(is_half==False):
data["train"]["precision"]="32"
batch_size = max(1, batch_size // 2)
data["train"]["batch_size"]=batch_size
data["train"]["epochs"]=total_epoch
data["pretrained_s1"]=pretrained_s1
data["train"]["save_every_n_epoch"]=save_every_epoch
data["train"]["if_save_every_weights"]=if_save_every_weights
data["train"]["if_save_latest"]=if_save_latest
data["train"]["if_dpo"]=if_dpo
data["train"]["half_weights_save_dir"]=GPT_weight_root
data["train"]["exp_name"]=exp_name
data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
data["output_dir"]="%s/logs_s1"%s1_dir
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
os.environ["hz"]="25hz"
tmp_config_path="%s/tmp_s1.yaml"%tmp
with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
# cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
print(cmd)
p_train_GPT = Popen(cmd, shell=True)
p_train_GPT.wait()
p_train_GPT=None
yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
def close1Bb():
global p_train_GPT
if(p_train_GPT!=None):
kill_process(p_train_GPT.pid)
p_train_GPT=None
return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
ps_slice=[]
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
global ps_slice
inp = my_utils.clean_path(inp)
opt_root = my_utils.clean_path(opt_root)
if(os.path.exists(inp)==False):
yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
return
if os.path.isfile(inp):n_parts=1
elif os.path.isdir(inp):pass
else:
yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
return
if (ps_slice == []):
for i_part in range(n_parts):
cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
print(cmd)
p = Popen(cmd, shell=True)
ps_slice.append(p)
yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps_slice:
p.wait()
ps_slice=[]
yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close_slice():
global ps_slice
if (ps_slice != []):
for p_slice in ps_slice:
try:
kill_process(p_slice.pid)
except:
traceback.print_exc()
ps_slice=[]
return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
ps1a=[]
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
global ps1a
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
if (ps1a == []):
opt_dir="%s/%s"%(exp_root,exp_name)
config={
"inp_text":inp_text,
"inp_wav_dir":inp_wav_dir,
"exp_name":exp_name,
"opt_dir":opt_dir,
"bert_pretrained_dir":bert_pretrained_dir,
}
gpu_names=gpu_numbers.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
"is_half": str(is_half)
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1a.append(p)
yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1a:
p.wait()
opt = []
for i_part in range(all_parts):
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
with open(txt_path, "r", encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(txt_path)
path_text = "%s/2-name2text.txt" % opt_dir
with open(path_text, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
ps1a=[]
if len("".join(opt)) > 0:
yield "文本进程成功", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
yield "文本进程失败", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close1a():
global ps1a
if (ps1a != []):
for p1a in ps1a:
try:
kill_process(p1a.pid)
except:
traceback.print_exc()
ps1a=[]
return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
ps1b=[]
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
global ps1b
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
if (ps1b == []):
config={
"inp_text":inp_text,
"inp_wav_dir":inp_wav_dir,
"exp_name":exp_name,
"opt_dir":"%s/%s"%(exp_root,exp_name),
"cnhubert_base_dir":ssl_pretrained_dir,
"is_half": str(is_half)
}
gpu_names=gpu_numbers.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1b.append(p)
yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1b:
p.wait()
ps1b=[]
yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close1b():
global ps1b
if (ps1b != []):
for p1b in ps1b:
try:
kill_process(p1b.pid)
except:
traceback.print_exc()
ps1b=[]
return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
ps1c=[]
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
global ps1c
inp_text = my_utils.clean_path(inp_text)
if (ps1c == []):
opt_dir="%s/%s"%(exp_root,exp_name)
config={
"inp_text":inp_text,
"exp_name":exp_name,
"opt_dir":opt_dir,
"pretrained_s2G":pretrained_s2G_path,
"s2config_path":"GPT_SoVITS/configs/s2.json",
"is_half": str(is_half)
}
gpu_names=gpu_numbers.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1c.append(p)
yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1c:
p.wait()
opt = ["item_name\tsemantic_audio"]
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
for i_part in range(all_parts):
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
with open(semantic_path, "r", encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(semantic_path)
with open(path_semantic, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
ps1c=[]
yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close1c():
global ps1c
if (ps1c != []):
for p1c in ps1c:
try:
kill_process(p1c.pid)
except:
traceback.print_exc()
ps1c=[]
return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
ps1abc=[]
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
global ps1abc
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
if (ps1abc == []):
opt_dir="%s/%s"%(exp_root,exp_name)
try:
#############################1a
path_text="%s/2-name2text.txt" % opt_dir
if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
config={
"inp_text":inp_text,
"inp_wav_dir":inp_wav_dir,
"exp_name":exp_name,
"opt_dir":opt_dir,
"bert_pretrained_dir":bert_pretrained_dir,
"is_half": str(is_half)
}
gpu_names=gpu_numbers1a.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1abc:p.wait()
opt = []
for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
with open(txt_path, "r",encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(txt_path)
with open(path_text, "w",encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
assert len("".join(opt)) > 0, "1Aa-文本获取进程失败"
yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
ps1abc=[]
#############################1b
config={
"inp_text":inp_text,
"inp_wav_dir":inp_wav_dir,
"exp_name":exp_name,
"opt_dir":opt_dir,
"cnhubert_base_dir":ssl_pretrained_dir,
}
gpu_names=gpu_numbers1Ba.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1abc:p.wait()
yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
ps1abc=[]
#############################1c
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
config={
"inp_text":inp_text,
"exp_name":exp_name,
"opt_dir":opt_dir,
"pretrained_s2G":pretrained_s2G_path,
"s2config_path":"GPT_SoVITS/configs/s2.json",
}
gpu_names=gpu_numbers1c.split("-")
all_parts=len(gpu_names)
for i_part in range(all_parts):
config.update(
{
"i_part": str(i_part),
"all_parts": str(all_parts),
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
}
)
os.environ.update(config)
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1abc:p.wait()
opt = ["item_name\tsemantic_audio"]
for i_part in range(all_parts):
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
with open(semantic_path, "r",encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(semantic_path)
with open(path_semantic, "w",encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
ps1abc = []
yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
except:
traceback.print_exc()
close1abc()
yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close1abc():
global ps1abc
if (ps1abc != []):
for p1abc in ps1abc:
try:
kill_process(p1abc.pid)
except:
traceback.print_exc()
ps1abc=[]
return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
)
gr.Markdown(
value=
i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
)
with gr.Tabs():
with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
with gr.Row():
if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True)
uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"))
gr.Markdown(value=i18n("0b-语音切分工具"))
with gr.Row():
with gr.Row():
slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
with gr.Row():
open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
_max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
gr.Markdown(value=i18n("0bb-语音降噪工具"))
with gr.Row():
open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True)
close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False)
denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="")
denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt")
denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息"))
gr.Markdown(value=i18n("0c-中文批量离线ASR工具"))
with gr.Row():
open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True)
close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
with gr.Column():
with gr.Row():
asr_inp_dir = gr.Textbox(
label=i18n("输入文件夹路径"),
value="D:\\GPT-SoVITS\\raw\\xxx",
interactive=True,
)
asr_opt_dir = gr.Textbox(
label = i18n("输出文件夹路径"),
value = "output/asr_opt",
interactive = True,
)
with gr.Row():
asr_model = gr.Dropdown(
label = i18n("ASR 模型"),
choices = list(asr_dict.keys()),
interactive = True,
value="达摩 ASR (中文)"
)
asr_size = gr.Dropdown(
label = i18n("ASR 模型尺寸"),
choices = ["large"],
interactive = True,
value="large"
)
asr_lang = gr.Dropdown(
label = i18n("ASR 语言设置"),
choices = ["zh"],
interactive = True,
value="zh"
)
with gr.Row():
asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))
def change_lang_choices(key): #根据选择的模型修改可选的语言
# return gr.Dropdown(choices=asr_dict[key]['lang'])
return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
# return gr.Dropdown(choices=asr_dict[key]['size'])
return {"__type__": "update", "choices": asr_dict[key]['size']}
asr_model.change(change_lang_choices, [asr_model], [asr_lang])
asr_model.change(change_size_choices, [asr_model], [asr_size])
gr.Markdown(value=i18n("0d-语音文本校对标注工具"))
with gr.Row():
if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
path_list = gr.Textbox(
label=i18n(".list标注文件的路径"),
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
interactive=True,
)
label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
if_label.change(change_label, [if_label,path_list], [label_info])
if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button])
close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button])
close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button])
close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
with gr.Row():
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True)
pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True)
pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True)
with gr.TabItem(i18n("1A-训练集格式化工具")):
gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
with gr.Row():
inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
inp_wav_dir = gr.Textbox(
label=i18n("*训练集音频文件目录"),
# value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
interactive=True,
placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。")
)
gr.Markdown(value=i18n("1Aa-文本内容"))
with gr.Row():
gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False)
button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True)
button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False)
info1a=gr.Textbox(label=i18n("文本进程输出信息"))
gr.Markdown(value=i18n("1Ab-SSL自监督特征提取"))
with gr.Row():
gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False)
button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True)
button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False)
info1b=gr.Textbox(label=i18n("SSL进程输出信息"))
gr.Markdown(value=i18n("1Ac-语义token提取"))
with gr.Row():
gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True)
button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False)
info1c=gr.Textbox(label=i18n("语义token提取进程输出信息"))
gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连"))
with gr.Row():
button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True)
button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False)
info1abc=gr.Textbox(label=i18n("一键三连进程输出信息"))
button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
with gr.TabItem(i18n("1B-微调训练")):
gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。"))
with gr.Row():
batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True)
text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True)
save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True)
if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
with gr.Row():
button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True)
button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False)
info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息"))
gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。"))
with gr.Row():
batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True)
if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
with gr.Row():
button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True)
button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False)
info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息"))
button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close])
button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close])
button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
with gr.TabItem(i18n("1C-推理")):
gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
with gr.Row():
GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name,interactive=True)
SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name,interactive=True)
gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
with gr.Row():
if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True)
tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息"))
if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info])
with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=True,
share=is_share,
server_port=webui_port_main,
quiet=True,
)
|