File size: 13,864 Bytes
8d7921b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import logging
from functools import partial

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from models import register
from .mmseg.models.sam import ImageEncoderViT, MaskDecoder, TwoWayTransformer

logger = logging.getLogger(__name__)
from .iou_loss import IOU
from typing import Any, Optional, Tuple

from .mmseg.models.sam import PromptEncoder

def init_weights(layer):
    if type(layer) == nn.Conv2d:
        nn.init.normal_(layer.weight, mean=0.0, std=0.02)
        nn.init.constant_(layer.bias, 0.0)
    elif type(layer) == nn.Linear:
        nn.init.normal_(layer.weight, mean=0.0, std=0.02)
        nn.init.constant_(layer.bias, 0.0)
    elif type(layer) == nn.BatchNorm2d:
        # print(layer)
        nn.init.normal_(layer.weight, mean=1.0, std=0.02)
        nn.init.constant_(layer.bias, 0.0)

class BBCEWithLogitLoss(nn.Module):
    '''
    Balanced BCEWithLogitLoss
    '''
    def __init__(self):
        super(BBCEWithLogitLoss, self).__init__()

    def forward(self, pred, gt):
        eps = 1e-10
        count_pos = torch.sum(gt) + eps
        count_neg = torch.sum(1. - gt)
        ratio = count_neg / count_pos
        w_neg = count_pos / (count_pos + count_neg)

        bce1 = nn.BCEWithLogitsLoss(pos_weight=ratio)
        loss = w_neg * bce1(pred, gt)

        return loss

def _iou_loss(pred, target):
    print('*****&&&', pred.shape, target.shape)
    pred = torch.sigmoid(pred)
    inter = (pred * target).sum(dim=(2, 3))
    union = (pred + target).sum(dim=(2, 3)) - inter
    iou = 1 - (inter / union)

    return iou.mean()

class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer(
            "positional_encoding_gaussian_matrix",
            scale * torch.randn((2, num_pos_feats)),
        )

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: int) -> torch.Tensor:
        """Generate positional encoding for a grid of the specified size."""
        h, w = size, size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w

        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
        return pe.permute(2, 0, 1)  # C x H x W


@register('sam')
class SAM(nn.Module):
    def __init__(self, inp_size=None, encoder_mode=None, loss=None):
        super().__init__()
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.embed_dim = encoder_mode['embed_dim']
        self.image_encoder = ImageEncoderViT(
            img_size=inp_size,
            patch_size=encoder_mode['patch_size'],
            in_chans=3,
            embed_dim=encoder_mode['embed_dim'],
            depth=encoder_mode['depth'],
            num_heads=encoder_mode['num_heads'],
            mlp_ratio=encoder_mode['mlp_ratio'],
            out_chans=encoder_mode['out_chans'],
            qkv_bias=encoder_mode['qkv_bias'],
            norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU,
            use_rel_pos=encoder_mode['use_rel_pos'],
            rel_pos_zero_init=True,
            window_size=encoder_mode['window_size'],
            global_attn_indexes=encoder_mode['global_attn_indexes'],
        )
        self.prompt_embed_dim = encoder_mode['prompt_embed_dim']#256
        prompt_embed_dim = 256
        image_embedding_size = inp_size / 16
        self.prompt_encoder = PromptEncoder(
            embed_dim=prompt_embed_dim,
            image_embedding_size=(int(image_embedding_size), int(image_embedding_size)),
            input_image_size=(inp_size, inp_size),
            mask_in_chans=16,
        )


        self.mask_decoder = MaskDecoder(
            # num_multimask_outputs=3,
            # num_multimask_outputs=15,#iasid
            # num_multimask_outputs=5,
            # num_multimask_outputs=25,
            num_multimask_outputs=14,
            # num_multimask_outputs=26,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=self.prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        )
        self.mask_decoder_diwu = MaskDecoder(
            # num_multimask_outputs=3,
            # num_multimask_outputs=15,#iasid
            # num_multimask_outputs=5,
            # num_multimask_outputs=25,
            # num_multimask_outputs=12,
            num_multimask_outputs=12,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=self.prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        )

        if 'evp' in encoder_mode['name']:
            for k, p in self.encoder.named_parameters():
                if "prompt" not in k and "mask_decoder" not in k and "prompt_encoder" not in k:
                    p.requires_grad = False



        self.loss_mode = loss
        if self.loss_mode == 'bce':
            self.criterionBCE = torch.nn.BCEWithLogitsLoss()

        elif self.loss_mode == 'bbce':
            self.criterionBCE = BBCEWithLogitLoss()

        elif self.loss_mode == 'iou':
            self.criterionBCE = torch.nn.BCEWithLogitsLoss()
            self.criterionIOU = IOU()

        elif self.loss_mode == 'cr':
            # self.criterionCR = torch.nn.CrossEntropyLoss(ignore_index=255, reduction='mean')
            self.criterionCR = torch.nn.CrossEntropyLoss(ignore_index=25, reduction='mean')
            # 鑳屾櫙绫讳笉鍙備笌璁$畻loss
            self.criterionIOU = IOU()

        self.pe_layer = PositionEmbeddingRandom(encoder_mode['prompt_embed_dim'] // 2)
        self.inp_size = inp_size
        self.image_embedding_size = inp_size // encoder_mode['patch_size']#1024/16
        self.no_mask_embed = nn.Embedding(1, encoder_mode['prompt_embed_dim'])#256

    def set_input(self, input, gt_mask):
        self.input = input.to(self.device)
        self.gt_mask = gt_mask.to(self.device)

    def get_dense_pe(self) -> torch.Tensor:
        """
        Returns the positional encoding used to encode point prompts,
        applied to a dense set of points the shape of the image encoding.

        Returns:
          torch.Tensor: Positional encoding with shape
            1x(embed_dim)x(embedding_h)x(embedding_w)
        """
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)


    def forward(self):
        bs = 1

        # Embed prompts
        sparse_embeddings = torch.empty((bs, 0, self.prompt_embed_dim), device=self.input.device)#绌簍ensor
        dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
            bs, -1, self.image_embedding_size, self.image_embedding_size
        )
        #鎻愬彇 image embedding
        # print('-----input-----',self.input.shape)
        self.features = self.image_encoder(self.input)  #鏈€鍚庝竴灞傝緭鍑?        # print('-----image emded-----', self.features.shape)
        # Predict masks
        low_res_masks, iou_predictions = self.mask_decoder(
            image_embeddings=self.features,
            image_pe=self.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            # multimask_output=False,
            multimask_output=True,
        )#B*C+1*H*W
        low_res_masks_2, iou_predictions_2 = self.mask_decoder_diwu(
            image_embeddings=self.features,
            image_pe=self.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            # multimask_output=False,
            multimask_output=True,
        )#B*C+1*H*W
        # print('----before cat',low_res_masks.shape, low_res_masks_2.shape)
        low_res_masks = torch.cat((low_res_masks, low_res_masks_2), 1)
        # print('----behind cat',low_res_masks.shape)
        # Upscale the masks to the original image resolution
        masks = self.postprocess_masks(low_res_masks, self.inp_size, self.inp_size)
        self.pred_mask = masks

    def infer(self, input):
        bs = 1

        # Embed prompts
        sparse_embeddings = torch.empty((bs, 0, self.prompt_embed_dim), device=input.device)
        dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
            bs, -1, self.image_embedding_size, self.image_embedding_size
        )

        self.features = self.image_encoder(input)

        # Predict masks
        low_res_masks, iou_predictions = self.mask_decoder(
            image_embeddings=self.features,
            image_pe=self.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            # multimask_output=False,
            multimask_output=True,
        )#b*1*256*256
        low_res_masks_2, iou_predictions_2 = self.mask_decoder_diwu(
            image_embeddings=self.features,
            image_pe=self.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            # multimask_output=False,
            multimask_output=True,
        )  # B*C+1*H*W
        # print('----before cat',low_res_masks.shape, low_res_masks_2.shape)
        low_res_masks = torch.cat((low_res_masks, low_res_masks_2), 1)


        # Upscale the masks to the original image resolution
        #b*1*1024*1024
        masks = self.postprocess_masks(low_res_masks, self.inp_size, self.inp_size)#涓婇噰鏍疯嚦鍘熷浘澶у皬
        # masks = masks.sigmoid()
        return masks

    def postprocess_masks(
        self,
        masks: torch.Tensor,
        input_size: Tuple[int, ...],
        original_size: Tuple[int, ...],
    ) -> torch.Tensor:
        """
        Remove padding and upscale masks to the original image size.

        Arguments:
          masks (torch.Tensor): Batched masks from the mask_decoder,
            in BxCxHxW format.
          input_size (tuple(int, int)): The size of the image input to the
            model, in (H, W) format. Used to remove padding.
          original_size (tuple(int, int)): The original size of the image
            before resizing for input to the model, in (H, W) format.

        Returns:
          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
            is given by original_size.
        """

        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode="bilinear",
            align_corners=False,
        )
        masks = masks[..., : input_size, : input_size]
        masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
        return masks

    def backward_G(self):
        """Calculate GAN and L1 loss for the generator"""
        # self.loss_G = self.criterionBCE(self.pred_mask, self.gt_mask)
        # if self.loss_mode == 'iou':
        #     self.loss_G += _iou_loss(self.pred_mask, self.gt_mask)
        # print('^&&&*###',self.pred_mask.shape, self.gt_mask.shape)
        # print(torch.unique(self.gt_mask))
        self.loss_G = self.criterionCR(self.pred_mask, self.gt_mask.squeeze(1).long())
        # if self.loss_mode == 'cr':
        #     self.loss_G += _iou_loss(self.pred_mask, self.gt_mask)

        # print('***selg gt masks',torch.unique(self.gt_mask))
        # print('####', self.loss_G)
        self.loss_G.backward()
    def _backward_(self, pred_mask, gt_mask):
        self.loss_G = self.criterionCR(pred_mask, gt_mask.squeeze(1).long())
        self.loss_G.backward()

    def optimize_parameters(self):
        self.forward()
        self.optimizer.zero_grad()  # set G's gradients to zero
        self.backward_G()  # calculate graidents for G
        self.optimizer.step()  # udpate G's weights

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x

    def set_requires_grad(self, nets, requires_grad=False):
        """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
        Parameters:
            nets (network list)   -- a list of networks
            requires_grad (bool)  -- whether the networks require gradients or not
        """
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad