Spaces:
Running
Running
File size: 13,948 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import typing as T
from dataclasses import dataclass
from functools import partial
import torch
import torch.nn as nn
from torch import nn
from torch.nn import LayerNorm
import esm
from esm import Alphabet
from esm.esmfold.v1.categorical_mixture import categorical_lddt
from esm.esmfold.v1.misc import (
batch_encode_sequences,
collate_dense_tensors,
output_to_pdb,
)
from esm.esmfold.v1.trunk import FoldingTrunk, FoldingTrunkConfig
from openfold.data.data_transforms import make_atom14_masks
from openfold.np import residue_constants
from openfold.utils.loss import compute_predicted_aligned_error, compute_tm
@dataclass
class ESMFoldConfig:
trunk: T.Any = FoldingTrunkConfig()
lddt_head_hid_dim: int = 128
load_fn = esm.pretrained.load_model_and_alphabet
esm_registry = {
"esm2_8M": partial(load_fn, "esm2_t6_8M_UR50D_500K"),
"esm2_8M_270K": esm.pretrained.esm2_t6_8M_UR50D,
"esm2_35M": partial(load_fn, "esm2_t12_35M_UR50D_500K"),
"esm2_35M_270K": esm.pretrained.esm2_t12_35M_UR50D,
"esm2_150M": partial(load_fn, "esm2_t30_150M_UR50D_500K"),
"esm2_150M_270K": partial(load_fn, "esm2_t30_150M_UR50D_270K"),
"esm2_650M": esm.pretrained.esm2_t33_650M_UR50D,
"esm2_650M_270K": partial(load_fn, "esm2_t33_650M_270K_UR50D"),
"esm2_3B": esm.pretrained.esm2_t36_3B_UR50D,
"esm2_3B_270K": partial(load_fn, "esm2_t36_3B_UR50D_500K"),
"esm2_15B": esm.pretrained.esm2_t48_15B_UR50D,
}
class ESMFold(nn.Module):
def __init__(self, esmfold_config=None, **kwargs):
super().__init__()
self.cfg = esmfold_config if esmfold_config else ESMFoldConfig(**kwargs)
cfg = self.cfg
self.distogram_bins = 64
self.esm, self.esm_dict = esm_registry.get(cfg.esm_type)()
self.esm.requires_grad_(False)
self.esm.half()
self.esm_feats = self.esm.embed_dim
self.esm_attns = self.esm.num_layers * self.esm.attention_heads
self.register_buffer("af2_to_esm", ESMFold._af2_to_esm(self.esm_dict))
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm.num_layers + 1))
c_s = cfg.trunk.sequence_state_dim
c_z = cfg.trunk.pairwise_state_dim
self.esm_s_mlp = nn.Sequential(
LayerNorm(self.esm_feats),
nn.Linear(self.esm_feats, c_s),
nn.ReLU(),
nn.Linear(c_s, c_s),
)
if cfg.use_esm_attn_map:
self.esm_z_mlp = nn.Sequential(
LayerNorm(self.esm_attns),
nn.Linear(self.esm_attns, c_z),
nn.ReLU(),
nn.Linear(c_z, c_z),
)
# 0 is padding, N is unknown residues, N + 1 is mask.
self.n_tokens_embed = residue_constants.restype_num + 3
self.pad_idx = 0
self.unk_idx = self.n_tokens_embed - 2
self.mask_idx = self.n_tokens_embed - 1
self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
self.trunk = FoldingTrunk(**cfg.trunk)
self.distogram_head = nn.Linear(c_z, self.distogram_bins)
self.ptm_head = nn.Linear(c_z, self.distogram_bins)
self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
self.lddt_bins = 50
self.lddt_head = nn.Sequential(
nn.LayerNorm(cfg.trunk.structure_module.c_s),
nn.Linear(cfg.trunk.structure_module.c_s, cfg.lddt_head_hid_dim),
nn.Linear(cfg.lddt_head_hid_dim, cfg.lddt_head_hid_dim),
nn.Linear(cfg.lddt_head_hid_dim, 37 * self.lddt_bins),
)
@staticmethod
def _af2_to_esm(d: Alphabet):
# Remember that t is shifted from residue_constants by 1 (0 is padding).
esm_reorder = [d.padding_idx] + [
d.get_idx(v) for v in residue_constants.restypes_with_x
]
return torch.tensor(esm_reorder)
def _af2_idx_to_esm_idx(self, aa, mask):
aa = (aa + 1).masked_fill(mask != 1, 0)
return self.af2_to_esm[aa]
def _compute_language_model_representations(
self, esmaa: torch.Tensor
) -> torch.Tensor:
"""Adds bos/eos tokens for the language model, since the structure module doesn't use these."""
batch_size = esmaa.size(0)
bosi, eosi = self.esm_dict.cls_idx, self.esm_dict.eos_idx
bos = esmaa.new_full((batch_size, 1), bosi)
eos = esmaa.new_full((batch_size, 1), self.esm_dict.padding_idx)
esmaa = torch.cat([bos, esmaa, eos], dim=1)
# Use the first padding index as eos during inference.
esmaa[range(batch_size), (esmaa != 1).sum(1)] = eosi
res = self.esm(
esmaa,
repr_layers=range(self.esm.num_layers + 1),
need_head_weights=self.cfg.use_esm_attn_map,
)
esm_s = torch.stack(
[v for _, v in sorted(res["representations"].items())], dim=2
)
esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
esm_z = (
res["attentions"].permute(0, 4, 3, 1, 2).flatten(3, 4)[:, 1:-1, 1:-1, :]
if self.cfg.use_esm_attn_map
else None
)
return esm_s, esm_z
def _mask_inputs_to_esm(self, esmaa, pattern):
new_esmaa = esmaa.clone()
new_esmaa[pattern == 1] = self.esm_dict.mask_idx
return new_esmaa
def forward(
self,
aa: torch.Tensor,
mask: T.Optional[torch.Tensor] = None,
residx: T.Optional[torch.Tensor] = None,
masking_pattern: T.Optional[torch.Tensor] = None,
num_recycles: T.Optional[int] = None,
):
"""Runs a forward pass given input tokens. Use `model.infer` to
run inference from a sequence.
Args:
aa (torch.Tensor): Tensor containing indices corresponding to amino acids. Indices match
openfold.np.residue_constants.restype_order_with_x.
mask (torch.Tensor): Binary tensor with 1 meaning position is unmasked and 0 meaning position is masked.
residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided.
masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size
as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when
different masks are provided.
num_recycles (int): How many recycle iterations to perform. If None, defaults to training max
recycles, which is 3.
"""
if mask is None:
mask = torch.ones_like(aa)
B = aa.shape[0]
L = aa.shape[1]
device = aa.device
if residx is None:
residx = torch.arange(L, device=device).expand_as(aa)
# === ESM ===
esmaa = self._af2_idx_to_esm_idx(aa, mask)
if masking_pattern is not None:
esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern)
esm_s, esm_z = self._compute_language_model_representations(esmaa)
# Convert esm_s to the precision used by the trunk and
# the structure module. These tensors may be a lower precision if, for example,
# we're running the language model in fp16 precision.
esm_s = esm_s.to(self.esm_s_combine.dtype)
esm_s = esm_s.detach()
# === preprocessing ===
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
s_s_0 = self.esm_s_mlp(esm_s)
if self.cfg.use_esm_attn_map:
esm_z = esm_z.to(self.esm_s_combine.dtype)
esm_z = esm_z.detach()
s_z_0 = self.esm_z_mlp(esm_z)
else:
s_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)
s_s_0 += self.embedding(aa)
structure: dict = self.trunk(
s_s_0, s_z_0, aa, residx, mask, no_recycles=num_recycles
)
# Documenting what we expect:
structure = {
k: v
for k, v in structure.items()
if k
in [
"s_z",
"s_s",
"frames",
"sidechain_frames",
"unnormalized_angles",
"angles",
"positions",
"states",
]
}
disto_logits = self.distogram_head(structure["s_z"])
disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
structure["distogram_logits"] = disto_logits
lm_logits = self.lm_head(structure["s_s"])
structure["lm_logits"] = lm_logits
structure["aatype"] = aa
make_atom14_masks(structure)
for k in [
"atom14_atom_exists",
"atom37_atom_exists",
]:
structure[k] *= mask.unsqueeze(-1)
structure["residue_index"] = residx
lddt_head = self.lddt_head(structure["states"]).reshape(
structure["states"].shape[0], B, L, -1, self.lddt_bins
)
structure["lddt_head"] = lddt_head
plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
structure["plddt"] = (
100 * plddt
) # we predict plDDT between 0 and 1, scale to be between 0 and 100.
ptm_logits = self.ptm_head(structure["s_z"])
seqlen = mask.type(torch.int64).sum(1)
structure["ptm_logits"] = ptm_logits
structure["ptm"] = torch.stack(
[
compute_tm(
batch_ptm_logits[None, :sl, :sl],
max_bins=31,
no_bins=self.distogram_bins,
)
for batch_ptm_logits, sl in zip(ptm_logits, seqlen)
]
)
structure.update(
compute_predicted_aligned_error(
ptm_logits, max_bin=31, no_bins=self.distogram_bins
)
)
return structure
@torch.no_grad()
def infer(
self,
sequences: T.Union[str, T.List[str]],
residx=None,
masking_pattern: T.Optional[torch.Tensor] = None,
num_recycles: T.Optional[int] = None,
residue_index_offset: T.Optional[int] = 512,
chain_linker: T.Optional[str] = "G" * 25,
):
"""Runs a forward pass given input sequences.
Args:
sequences (Union[str, List[str]]): A list of sequences to make predictions for. Multimers can also be passed in,
each chain should be separated by a ':' token (e.g. "<chain1>:<chain2>:<chain3>").
residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided.
masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size
as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when
different masks are provided.
num_recycles (int): How many recycle iterations to perform. If None, defaults to training max
recycles (cfg.trunk.max_recycles), which is 4.
residue_index_offset (int): Residue index separation between chains if predicting a multimer. Has no effect on
single chain predictions. Default: 512.
chain_linker (str): Linker to use between chains if predicting a multimer. Has no effect on single chain
predictions. Default: length-25 poly-G ("G" * 25).
"""
if isinstance(sequences, str):
sequences = [sequences]
aatype, mask, _residx, linker_mask, chain_index = batch_encode_sequences(
sequences, residue_index_offset, chain_linker
)
if residx is None:
residx = _residx
elif not isinstance(residx, torch.Tensor):
residx = collate_dense_tensors(residx)
aatype, mask, residx, linker_mask = map(
lambda x: x.to(self.device), (aatype, mask, residx, linker_mask)
)
output = self.forward(
aatype,
mask=mask,
residx=residx,
masking_pattern=masking_pattern,
num_recycles=num_recycles,
)
output["atom37_atom_exists"] = output[
"atom37_atom_exists"
] * linker_mask.unsqueeze(2)
output["mean_plddt"] = (output["plddt"] * output["atom37_atom_exists"]).sum(
dim=(1, 2)
) / output["atom37_atom_exists"].sum(dim=(1, 2))
output["chain_index"] = chain_index
return output
def output_to_pdb(self, output: T.Dict) -> T.List[str]:
"""Returns the pbd (file) string from the model given the model output."""
return output_to_pdb(output)
def infer_pdbs(self, seqs: T.List[str], *args, **kwargs) -> T.List[str]:
"""Returns list of pdb (files) strings from the model given a list of input sequences."""
output = self.infer(seqs, *args, **kwargs)
return self.output_to_pdb(output)
def infer_pdb(self, sequence: str, *args, **kwargs) -> str:
"""Returns the pdb (file) string from the model given an input sequence."""
return self.infer_pdbs([sequence], *args, **kwargs)[0]
def set_chunk_size(self, chunk_size: T.Optional[int]):
# This parameter means the axial attention will be computed
# in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
# It's equivalent to running a for loop over chunks of the dimension we're iterative over,
# where the chunk_size is the size of the chunks, so 128 would mean to parse 128-lengthed chunks.
# Setting the value to None will return to default behavior, disable chunking.
self.trunk.set_chunk_size(chunk_size)
@property
def device(self):
return self.esm_s_combine.device
|