Spaces:
Running
Running
File size: 17,245 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import os
from typing import Sequence, Tuple, List, Union
import pickle
import re
import shutil
import torch
from pathlib import Path
from esm.constants import proteinseq_toks
RawMSA = Sequence[Tuple[str, str]]
class FastaBatchedDataset(object):
def __init__(self, sequence_labels, sequence_strs):
self.sequence_labels = list(sequence_labels)
self.sequence_strs = list(sequence_strs)
@classmethod
def from_file(cls, fasta_file):
sequence_labels, sequence_strs = [], []
cur_seq_label = None
buf = []
def _flush_current_seq():
nonlocal cur_seq_label, buf
if cur_seq_label is None:
return
sequence_labels.append(cur_seq_label)
sequence_strs.append("".join(buf))
cur_seq_label = None
buf = []
with open(fasta_file, "r") as infile:
for line_idx, line in enumerate(infile):
if line.startswith(">"): # label line
_flush_current_seq()
line = line[1:].strip()
if len(line) > 0:
cur_seq_label = line
else:
cur_seq_label = f"seqnum{line_idx:09d}"
else: # sequence line
buf.append(line.strip())
_flush_current_seq()
assert len(set(sequence_labels)) == len(
sequence_labels
), "Found duplicate sequence labels"
return cls(sequence_labels, sequence_strs)
def __len__(self):
return len(self.sequence_labels)
def __getitem__(self, idx):
return self.sequence_labels[idx], self.sequence_strs[idx]
def get_batch_indices(self, toks_per_batch, extra_toks_per_seq=0):
sizes = [(len(s), i) for i, s in enumerate(self.sequence_strs)]
sizes.sort()
batches = []
buf = []
max_len = 0
def _flush_current_buf():
nonlocal max_len, buf
if len(buf) == 0:
return
batches.append(buf)
buf = []
max_len = 0
for sz, i in sizes:
sz += extra_toks_per_seq
if max(sz, max_len) * (len(buf) + 1) > toks_per_batch:
_flush_current_buf()
max_len = max(max_len, sz)
buf.append(i)
_flush_current_buf()
return batches
class Alphabet(object):
def __init__(
self,
standard_toks: Sequence[str],
prepend_toks: Sequence[str] = ("<null_0>", "<pad>", "<eos>", "<unk>"),
append_toks: Sequence[str] = ("<cls>", "<mask>", "<sep>"),
prepend_bos: bool = True,
append_eos: bool = False,
use_msa: bool = False,
):
self.standard_toks = list(standard_toks)
self.prepend_toks = list(prepend_toks)
self.append_toks = list(append_toks)
self.prepend_bos = prepend_bos
self.append_eos = append_eos
self.use_msa = use_msa
self.all_toks = list(self.prepend_toks)
self.all_toks.extend(self.standard_toks)
for i in range((8 - (len(self.all_toks) % 8)) % 8):
self.all_toks.append(f"<null_{i + 1}>")
self.all_toks.extend(self.append_toks)
self.tok_to_idx = {tok: i for i, tok in enumerate(self.all_toks)}
self.unk_idx = self.tok_to_idx["<unk>"]
self.padding_idx = self.get_idx("<pad>")
self.cls_idx = self.get_idx("<cls>")
self.mask_idx = self.get_idx("<mask>")
self.eos_idx = self.get_idx("<eos>")
self.all_special_tokens = ['<eos>', '<unk>', '<pad>', '<cls>', '<mask>']
self.unique_no_split_tokens = self.all_toks
def __len__(self):
return len(self.all_toks)
def get_idx(self, tok):
return self.tok_to_idx.get(tok, self.unk_idx)
def get_tok(self, ind):
return self.all_toks[ind]
def to_dict(self):
return self.tok_to_idx.copy()
def get_batch_converter(self, truncation_seq_length: int = None):
if self.use_msa:
return MSABatchConverter(self, truncation_seq_length)
else:
return BatchConverter(self, truncation_seq_length)
@classmethod
def from_architecture(cls, name: str) -> "Alphabet":
if name in ("ESM-1", "protein_bert_base"):
standard_toks = proteinseq_toks["toks"]
prepend_toks: Tuple[str, ...] = ("<null_0>", "<pad>", "<eos>", "<unk>")
append_toks: Tuple[str, ...] = ("<cls>", "<mask>", "<sep>")
prepend_bos = True
append_eos = False
use_msa = False
elif name in ("ESM-1b", "roberta_large"):
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<cls>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>",)
prepend_bos = True
append_eos = True
use_msa = False
elif name in ("MSA Transformer", "msa_transformer"):
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<cls>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>",)
prepend_bos = True
append_eos = False
use_msa = True
elif "invariant_gvp" in name.lower():
standard_toks = proteinseq_toks["toks"]
prepend_toks = ("<null_0>", "<pad>", "<eos>", "<unk>")
append_toks = ("<mask>", "<cath>", "<af2>")
prepend_bos = True
append_eos = False
use_msa = False
else:
raise ValueError("Unknown architecture selected")
return cls(standard_toks, prepend_toks, append_toks, prepend_bos, append_eos, use_msa)
def _tokenize(self, text) -> str:
return text.split()
def tokenize(self, text, **kwargs) -> List[str]:
"""
Inspired by https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py
Converts a string in a sequence of tokens, using the tokenizer.
Args:
text (:obj:`str`):
The sequence to be encoded.
Returns:
:obj:`List[str]`: The list of tokens.
"""
def split_on_token(tok, text):
result = []
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# AddedToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# We strip left and right by default
if i < len(split_text) - 1:
sub_text = sub_text.rstrip()
if i > 0:
sub_text = sub_text.lstrip()
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self.unique_no_split_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._tokenize(token)
if token not in self.unique_no_split_tokens
else [token]
for token in tokenized_text
)
)
)
no_split_token = self.unique_no_split_tokens
tokenized_text = split_on_tokens(no_split_token, text)
return tokenized_text
def encode(self, text):
return [self.tok_to_idx[tok] for tok in self.tokenize(text)]
class BatchConverter(object):
"""Callable to convert an unprocessed (labels + strings) batch to a
processed (labels + tensor) batch.
"""
def __init__(self, alphabet, truncation_seq_length: int = None):
self.alphabet = alphabet
self.truncation_seq_length = truncation_seq_length
def __call__(self, raw_batch: Sequence[Tuple[str, str]]):
# RoBERTa uses an eos token, while ESM-1 does not.
batch_size = len(raw_batch)
batch_labels, seq_str_list = zip(*raw_batch)
seq_encoded_list = [self.alphabet.encode(seq_str) for seq_str in seq_str_list]
if self.truncation_seq_length:
seq_encoded_list = [seq_str[:self.truncation_seq_length] for seq_str in seq_encoded_list]
max_len = max(len(seq_encoded) for seq_encoded in seq_encoded_list)
tokens = torch.empty(
(
batch_size,
max_len + int(self.alphabet.prepend_bos) + int(self.alphabet.append_eos),
),
dtype=torch.int64,
)
tokens.fill_(self.alphabet.padding_idx)
labels = []
strs = []
for i, (label, seq_str, seq_encoded) in enumerate(
zip(batch_labels, seq_str_list, seq_encoded_list)
):
labels.append(label)
strs.append(seq_str)
if self.alphabet.prepend_bos:
tokens[i, 0] = self.alphabet.cls_idx
seq = torch.tensor(seq_encoded, dtype=torch.int64)
tokens[
i,
int(self.alphabet.prepend_bos) : len(seq_encoded)
+ int(self.alphabet.prepend_bos),
] = seq
if self.alphabet.append_eos:
tokens[i, len(seq_encoded) + int(self.alphabet.prepend_bos)] = self.alphabet.eos_idx
return labels, strs, tokens
class MSABatchConverter(BatchConverter):
def __call__(self, inputs: Union[Sequence[RawMSA], RawMSA]):
if isinstance(inputs[0][0], str):
# Input is a single MSA
raw_batch: Sequence[RawMSA] = [inputs] # type: ignore
else:
raw_batch = inputs # type: ignore
batch_size = len(raw_batch)
max_alignments = max(len(msa) for msa in raw_batch)
max_seqlen = max(len(msa[0][1]) for msa in raw_batch)
tokens = torch.empty(
(
batch_size,
max_alignments,
max_seqlen + int(self.alphabet.prepend_bos) + int(self.alphabet.append_eos),
),
dtype=torch.int64,
)
tokens.fill_(self.alphabet.padding_idx)
labels = []
strs = []
for i, msa in enumerate(raw_batch):
msa_seqlens = set(len(seq) for _, seq in msa)
if not len(msa_seqlens) == 1:
raise RuntimeError(
"Received unaligned sequences for input to MSA, all sequence "
"lengths must be equal."
)
msa_labels, msa_strs, msa_tokens = super().__call__(msa)
labels.append(msa_labels)
strs.append(msa_strs)
tokens[i, : msa_tokens.size(0), : msa_tokens.size(1)] = msa_tokens
return labels, strs, tokens
def read_fasta(
path,
keep_gaps=True,
keep_insertions=True,
to_upper=False,
):
with open(path, "r") as f:
for result in read_alignment_lines(
f, keep_gaps=keep_gaps, keep_insertions=keep_insertions, to_upper=to_upper
):
yield result
def read_alignment_lines(
lines,
keep_gaps=True,
keep_insertions=True,
to_upper=False,
):
seq = desc = None
def parse(s):
if not keep_gaps:
s = re.sub("-", "", s)
if not keep_insertions:
s = re.sub("[a-z]", "", s)
return s.upper() if to_upper else s
for line in lines:
# Line may be empty if seq % file_line_width == 0
if len(line) > 0 and line[0] == ">":
if seq is not None:
yield desc, parse(seq)
desc = line.strip().lstrip(">")
seq = ""
else:
assert isinstance(seq, str)
seq += line.strip()
assert isinstance(seq, str) and isinstance(desc, str)
yield desc, parse(seq)
class ESMStructuralSplitDataset(torch.utils.data.Dataset):
"""
Structural Split Dataset as described in section A.10 of the supplement of our paper.
https://doi.org/10.1101/622803
We use the full version of SCOPe 2.07, clustered at 90% sequence identity,
generated on January 23, 2020.
For each SCOPe domain:
- We extract the sequence from the corresponding PDB file
- We extract the 3D coordinates of the Carbon beta atoms, aligning them
to the sequence. We put NaN where Cb atoms are missing.
- From the 3D coordinates, we calculate a pairwise distance map, based
on L2 distance
- We use DSSP to generate secondary structure labels for the corresponding
PDB file. This is also aligned to the sequence. We put - where SSP
labels are missing.
For each SCOPe classification level of family/superfamily/fold (in order of difficulty),
we have split the data into 5 partitions for cross validation. These are provided
in a downloaded splits folder, in the format:
splits/{split_level}/{cv_partition}/{train|valid}.txt
where train is the partition and valid is the concatentation of the remaining 4.
For each SCOPe domain, we provide a pkl dump that contains:
- seq : The domain sequence, stored as an L-length string
- ssp : The secondary structure labels, stored as an L-length string
- dist : The distance map, stored as an LxL numpy array
- coords : The 3D coordinates, stored as an Lx3 numpy array
"""
base_folder = "structural-data"
file_list = [
# url tar filename filename MD5 Hash
(
"https://dl.fbaipublicfiles.com/fair-esm/structural-data/splits.tar.gz",
"splits.tar.gz",
"splits",
"456fe1c7f22c9d3d8dfe9735da52411d",
),
(
"https://dl.fbaipublicfiles.com/fair-esm/structural-data/pkl.tar.gz",
"pkl.tar.gz",
"pkl",
"644ea91e56066c750cd50101d390f5db",
),
]
def __init__(
self,
split_level,
cv_partition,
split,
root_path=os.path.expanduser("~/.cache/torch/data/esm"),
download=False,
):
super().__init__()
assert split in [
"train",
"valid",
], "train_valid must be 'train' or 'valid'"
self.root_path = root_path
self.base_path = os.path.join(self.root_path, self.base_folder)
# check if root path has what you need or else download it
if download:
self.download()
self.split_file = os.path.join(
self.base_path, "splits", split_level, cv_partition, f"{split}.txt"
)
self.pkl_dir = os.path.join(self.base_path, "pkl")
self.names = []
with open(self.split_file) as f:
self.names = f.read().splitlines()
def __len__(self):
return len(self.names)
def _check_exists(self) -> bool:
for (_, _, filename, _) in self.file_list:
fpath = os.path.join(self.base_path, filename)
if not os.path.exists(fpath) or not os.path.isdir(fpath):
return False
return True
def download(self):
if self._check_exists():
print("Files already downloaded and verified")
return
from torchvision.datasets.utils import download_url
for url, tar_filename, filename, md5_hash in self.file_list:
download_path = os.path.join(self.base_path, tar_filename)
download_url(url=url, root=self.base_path, filename=tar_filename, md5=md5_hash)
shutil.unpack_archive(download_path, self.base_path)
def __getitem__(self, idx):
"""
Returns a dict with the following entires
- seq : Str (domain sequence)
- ssp : Str (SSP labels)
- dist : np.array (distance map)
- coords : np.array (3D coordinates)
"""
name = self.names[idx]
pkl_fname = os.path.join(self.pkl_dir, name[1:3], f"{name}.pkl")
with open(pkl_fname, "rb") as f:
obj = pickle.load(f)
return obj
|