Spaces:
Running
Running
File size: 14,895 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Portions of this file were adapted from the open source code for the following
# two papers:
#
# Ingraham, J., Garg, V., Barzilay, R., & Jaakkola, T. (2019). Generative
# models for graph-based protein design. Advances in Neural Information
# Processing Systems, 32.
#
# Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., & Dror, R. (2020).
# Learning from Protein Structure with Geometric Vector Perceptrons. In
# International Conference on Learning Representations.
#
# MIT License
#
# Copyright (c) 2020 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, Ron Dror
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ================================================================
# The below license applies to the portions of the code (parts of
# src/datasets.py and src/models.py) adapted from Ingraham, et al.
# ================================================================
#
# MIT License
#
# Copyright (c) 2019 John Ingraham, Vikas Garg, Regina Barzilay, Tommi Jaakkola
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
print("features1")
from .gvp_utils import flatten_graph
print("features2")
from .gvp_modules import GVP, LayerNorm
print("features3")
from .util import normalize, norm, nan_to_num, rbf
print("features4")
class GVPInputFeaturizer(nn.Module):
@staticmethod
def get_node_features(coords, coord_mask, with_coord_mask=True):
# scalar features
node_scalar_features = GVPInputFeaturizer._dihedrals(coords)
if with_coord_mask:
node_scalar_features = torch.cat([
node_scalar_features,
coord_mask.float().unsqueeze(-1)
], dim=-1)
# vector features
X_ca = coords[:, :, 1]
orientations = GVPInputFeaturizer._orientations(X_ca)
sidechains = GVPInputFeaturizer._sidechains(coords)
node_vector_features = torch.cat([orientations, sidechains.unsqueeze(-2)], dim=-2)
return node_scalar_features, node_vector_features
@staticmethod
def _orientations(X):
forward = normalize(X[:, 1:] - X[:, :-1])
backward = normalize(X[:, :-1] - X[:, 1:])
forward = F.pad(forward, [0, 0, 0, 1])
backward = F.pad(backward, [0, 0, 1, 0])
return torch.cat([forward.unsqueeze(-2), backward.unsqueeze(-2)], -2)
@staticmethod
def _sidechains(X):
n, origin, c = X[:, :, 0], X[:, :, 1], X[:, :, 2]
c, n = normalize(c - origin), normalize(n - origin)
bisector = normalize(c + n)
perp = normalize(torch.cross(c, n, dim=-1))
vec = -bisector * math.sqrt(1 / 3) - perp * math.sqrt(2 / 3)
return vec
@staticmethod
def _dihedrals(X, eps=1e-7):
X = torch.flatten(X[:, :, :3], 1, 2)
bsz = X.shape[0]
dX = X[:, 1:] - X[:, :-1]
U = normalize(dX, dim=-1)
u_2 = U[:, :-2]
u_1 = U[:, 1:-1]
u_0 = U[:, 2:]
# Backbone normals
n_2 = normalize(torch.cross(u_2, u_1, dim=-1), dim=-1)
n_1 = normalize(torch.cross(u_1, u_0, dim=-1), dim=-1)
# Angle between normals
cosD = torch.sum(n_2 * n_1, -1)
cosD = torch.clamp(cosD, -1 + eps, 1 - eps)
D = torch.sign(torch.sum(u_2 * n_1, -1)) * torch.acos(cosD)
# This scheme will remove phi[0], psi[-1], omega[-1]
D = F.pad(D, [1, 2])
D = torch.reshape(D, [bsz, -1, 3])
# Lift angle representations to the circle
D_features = torch.cat([torch.cos(D), torch.sin(D)], -1)
return D_features
@staticmethod
def _positional_embeddings(edge_index,
num_embeddings=None,
num_positional_embeddings=16,
period_range=[2, 1000]):
# From https://github.com/jingraham/neurips19-graph-protein-design
num_embeddings = num_embeddings or num_positional_embeddings
d = edge_index[0] - edge_index[1]
frequency = torch.exp(
torch.arange(0, num_embeddings, 2, dtype=torch.float32,
device=edge_index.device)
* -(np.log(10000.0) / num_embeddings)
)
angles = d.unsqueeze(-1) * frequency
E = torch.cat((torch.cos(angles), torch.sin(angles)), -1)
return E
@staticmethod
def _dist(X, coord_mask, padding_mask, top_k_neighbors, eps=1e-8):
""" Pairwise euclidean distances """
bsz, maxlen = X.size(0), X.size(1)
coord_mask_2D = torch.unsqueeze(coord_mask,1) * torch.unsqueeze(coord_mask,2)
residue_mask = ~padding_mask
residue_mask_2D = torch.unsqueeze(residue_mask,1) * torch.unsqueeze(residue_mask,2)
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
D = coord_mask_2D * norm(dX, dim=-1)
# sorting preference: first those with coords, then among the residues that
# exist but are masked use distance in sequence as tie breaker, and then the
# residues that came from padding are last
seqpos = torch.arange(maxlen, device=X.device)
Dseq = torch.abs(seqpos.unsqueeze(1) - seqpos.unsqueeze(0)).repeat(bsz, 1, 1)
D_adjust = nan_to_num(D) + (~coord_mask_2D) * (1e8 + Dseq*1e6) + (
~residue_mask_2D) * (1e10)
if top_k_neighbors == -1:
D_neighbors = D_adjust
E_idx = seqpos.repeat(
*D_neighbors.shape[:-1], 1)
else:
# Identify k nearest neighbors (including self)
k = min(top_k_neighbors, X.size(1))
D_neighbors, E_idx = torch.topk(D_adjust, k, dim=-1, largest=False)
coord_mask_neighbors = (D_neighbors < 5e7)
residue_mask_neighbors = (D_neighbors < 5e9)
return D_neighbors, E_idx, coord_mask_neighbors, residue_mask_neighbors
class Normalize(nn.Module):
def __init__(self, features, epsilon=1e-6):
super(Normalize, self).__init__()
self.gain = nn.Parameter(torch.ones(features))
self.bias = nn.Parameter(torch.zeros(features))
self.epsilon = epsilon
def forward(self, x, dim=-1):
mu = x.mean(dim, keepdim=True)
sigma = torch.sqrt(x.var(dim, keepdim=True) + self.epsilon)
gain = self.gain
bias = self.bias
# Reshape
if dim != -1:
shape = [1] * len(mu.size())
shape[dim] = self.gain.size()[0]
gain = gain.view(shape)
bias = bias.view(shape)
return gain * (x - mu) / (sigma + self.epsilon) + bias
class DihedralFeatures(nn.Module):
def __init__(self, node_embed_dim):
""" Embed dihedral angle features. """
super(DihedralFeatures, self).__init__()
# 3 dihedral angles; sin and cos of each angle
node_in = 6
# Normalization and embedding
self.node_embedding = nn.Linear(node_in, node_embed_dim, bias=True)
self.norm_nodes = Normalize(node_embed_dim)
def forward(self, X):
""" Featurize coordinates as an attributed graph """
V = self._dihedrals(X)
V = self.node_embedding(V)
V = self.norm_nodes(V)
return V
@staticmethod
def _dihedrals(X, eps=1e-7, return_angles=False):
# First 3 coordinates are N, CA, C
X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3)
# Shifted slices of unit vectors
dX = X[:,1:,:] - X[:,:-1,:]
U = F.normalize(dX, dim=-1)
u_2 = U[:,:-2,:]
u_1 = U[:,1:-1,:]
u_0 = U[:,2:,:]
# Backbone normals
n_2 = F.normalize(torch.cross(u_2, u_1, dim=-1), dim=-1)
n_1 = F.normalize(torch.cross(u_1, u_0, dim=-1), dim=-1)
# Angle between normals
cosD = (n_2 * n_1).sum(-1)
cosD = torch.clamp(cosD, -1+eps, 1-eps)
D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
# This scheme will remove phi[0], psi[-1], omega[-1]
D = F.pad(D, (1,2), 'constant', 0)
D = D.view((D.size(0), int(D.size(1)/3), 3))
phi, psi, omega = torch.unbind(D,-1)
if return_angles:
return phi, psi, omega
# Lift angle representations to the circle
D_features = torch.cat((torch.cos(D), torch.sin(D)), 2)
return D_features
class GVPGraphEmbedding(GVPInputFeaturizer):
def __init__(self, args):
super().__init__()
self.top_k_neighbors = args.top_k_neighbors
self.num_positional_embeddings = 16
self.remove_edges_without_coords = True
node_input_dim = (7, 3)
edge_input_dim = (34, 1)
node_hidden_dim = (args.node_hidden_dim_scalar,
args.node_hidden_dim_vector)
edge_hidden_dim = (args.edge_hidden_dim_scalar,
args.edge_hidden_dim_vector)
self.embed_node = nn.Sequential(
GVP(node_input_dim, node_hidden_dim, activations=(None, None)),
LayerNorm(node_hidden_dim, eps=1e-4)
)
self.embed_edge = nn.Sequential(
GVP(edge_input_dim, edge_hidden_dim, activations=(None, None)),
LayerNorm(edge_hidden_dim, eps=1e-4)
)
self.embed_confidence = nn.Linear(16, args.node_hidden_dim_scalar)
def forward(self, coords, coord_mask, padding_mask, confidence):
with torch.no_grad():
node_features = self.get_node_features(coords, coord_mask)
edge_features, edge_index = self.get_edge_features(
coords, coord_mask, padding_mask)
node_embeddings_scalar, node_embeddings_vector = self.embed_node(node_features)
edge_embeddings = self.embed_edge(edge_features)
rbf_rep = rbf(confidence, 0., 1.)
node_embeddings = (
node_embeddings_scalar + self.embed_confidence(rbf_rep),
node_embeddings_vector
)
node_embeddings, edge_embeddings, edge_index = flatten_graph(
node_embeddings, edge_embeddings, edge_index)
return node_embeddings, edge_embeddings, edge_index
def get_edge_features(self, coords, coord_mask, padding_mask):
X_ca = coords[:, :, 1]
# Get distances to the top k neighbors
E_dist, E_idx, E_coord_mask, E_residue_mask = GVPInputFeaturizer._dist(
X_ca, coord_mask, padding_mask, self.top_k_neighbors)
# Flatten the graph to be batch size 1 for torch_geometric package
dest = E_idx
B, L, k = E_idx.shape[:3]
src = torch.arange(L, device=E_idx.device).view([1, L, 1]).expand(B, L, k)
# After flattening, [2, B, E]
edge_index = torch.stack([src, dest], dim=0).flatten(2, 3)
# After flattening, [B, E]
E_dist = E_dist.flatten(1, 2)
E_coord_mask = E_coord_mask.flatten(1, 2).unsqueeze(-1)
E_residue_mask = E_residue_mask.flatten(1, 2)
# Calculate relative positional embeddings and distance RBF
pos_embeddings = GVPInputFeaturizer._positional_embeddings(
edge_index,
num_positional_embeddings=self.num_positional_embeddings,
)
D_rbf = rbf(E_dist, 0., 20.)
# Calculate relative orientation
X_src = X_ca.unsqueeze(2).expand(-1, -1, k, -1).flatten(1, 2)
X_dest = torch.gather(
X_ca,
1,
edge_index[1, :, :].unsqueeze(-1).expand([B, L*k, 3])
)
coord_mask_src = coord_mask.unsqueeze(2).expand(-1, -1, k).flatten(1, 2)
coord_mask_dest = torch.gather(
coord_mask,
1,
edge_index[1, :, :].expand([B, L*k])
)
E_vectors = X_src - X_dest
# For the ones without coordinates, substitute in the average vector
E_vector_mean = torch.sum(E_vectors * E_coord_mask, dim=1,
keepdims=True) / torch.sum(E_coord_mask, dim=1, keepdims=True)
E_vectors = E_vectors * E_coord_mask + E_vector_mean * ~(E_coord_mask)
# Normalize and remove nans
edge_s = torch.cat([D_rbf, pos_embeddings], dim=-1)
edge_v = normalize(E_vectors).unsqueeze(-2)
edge_s, edge_v = map(nan_to_num, (edge_s, edge_v))
# Also add indications of whether the coordinates are present
edge_s = torch.cat([
edge_s,
(~coord_mask_src).float().unsqueeze(-1),
(~coord_mask_dest).float().unsqueeze(-1),
], dim=-1)
edge_index[:, ~E_residue_mask] = -1
if self.remove_edges_without_coords:
edge_index[:, ~E_coord_mask.squeeze(-1)] = -1
return (edge_s, edge_v), edge_index.transpose(0, 1)
|