File size: 14,895 Bytes
85ab89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# 
# Portions of this file were adapted from the open source code for the following
# two papers:
#
#   Ingraham, J., Garg, V., Barzilay, R., & Jaakkola, T. (2019). Generative
#   models for graph-based protein design. Advances in Neural Information
#   Processing Systems, 32.
#
#   Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., & Dror, R. (2020).
#   Learning from Protein Structure with Geometric Vector Perceptrons. In
#   International Conference on Learning Representations.
#
# MIT License
# 
# Copyright (c) 2020 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, Ron Dror
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# 
# ================================================================
# The below license applies to the portions of the code (parts of 
# src/datasets.py and src/models.py) adapted from Ingraham, et al.
# ================================================================
# 
# MIT License
# 
# Copyright (c) 2019 John Ingraham, Vikas Garg, Regina Barzilay, Tommi Jaakkola
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

print("features1")
from .gvp_utils import flatten_graph
print("features2")
from .gvp_modules import GVP, LayerNorm
print("features3")
from .util import normalize, norm, nan_to_num, rbf
print("features4")


class GVPInputFeaturizer(nn.Module):

    @staticmethod
    def get_node_features(coords, coord_mask, with_coord_mask=True):
        # scalar features
        node_scalar_features = GVPInputFeaturizer._dihedrals(coords)
        if with_coord_mask:
            node_scalar_features = torch.cat([
                node_scalar_features,
                coord_mask.float().unsqueeze(-1)
            ], dim=-1) 
        # vector features
        X_ca = coords[:, :, 1]
        orientations = GVPInputFeaturizer._orientations(X_ca)
        sidechains = GVPInputFeaturizer._sidechains(coords)
        node_vector_features = torch.cat([orientations, sidechains.unsqueeze(-2)], dim=-2)
        return node_scalar_features, node_vector_features

    @staticmethod
    def _orientations(X):
        forward = normalize(X[:, 1:] - X[:, :-1])
        backward = normalize(X[:, :-1] - X[:, 1:])
        forward = F.pad(forward, [0, 0, 0, 1])
        backward = F.pad(backward, [0, 0, 1, 0])
        return torch.cat([forward.unsqueeze(-2), backward.unsqueeze(-2)], -2)
    
    @staticmethod
    def _sidechains(X):
        n, origin, c = X[:, :, 0], X[:, :, 1], X[:, :, 2]
        c, n = normalize(c - origin), normalize(n - origin)
        bisector = normalize(c + n)
        perp = normalize(torch.cross(c, n, dim=-1))
        vec = -bisector * math.sqrt(1 / 3) - perp * math.sqrt(2 / 3)
        return vec 

    @staticmethod
    def _dihedrals(X, eps=1e-7):
        X = torch.flatten(X[:, :, :3], 1, 2)
        bsz = X.shape[0]
        dX = X[:, 1:] - X[:, :-1]
        U = normalize(dX, dim=-1)
        u_2 = U[:, :-2]
        u_1 = U[:, 1:-1]
        u_0 = U[:, 2:]
    
        # Backbone normals
        n_2 = normalize(torch.cross(u_2, u_1, dim=-1), dim=-1)
        n_1 = normalize(torch.cross(u_1, u_0, dim=-1), dim=-1)
    
        # Angle between normals
        cosD = torch.sum(n_2 * n_1, -1)
        cosD = torch.clamp(cosD, -1 + eps, 1 - eps)
        D = torch.sign(torch.sum(u_2 * n_1, -1)) * torch.acos(cosD)
    
        # This scheme will remove phi[0], psi[-1], omega[-1]
        D = F.pad(D, [1, 2]) 
        D = torch.reshape(D, [bsz, -1, 3])
        # Lift angle representations to the circle
        D_features = torch.cat([torch.cos(D), torch.sin(D)], -1)
        return D_features

    @staticmethod
    def _positional_embeddings(edge_index, 
                               num_embeddings=None,
                               num_positional_embeddings=16,
                               period_range=[2, 1000]):
        # From https://github.com/jingraham/neurips19-graph-protein-design
        num_embeddings = num_embeddings or num_positional_embeddings
        d = edge_index[0] - edge_index[1]
     
        frequency = torch.exp(
            torch.arange(0, num_embeddings, 2, dtype=torch.float32,
                device=edge_index.device)
            * -(np.log(10000.0) / num_embeddings)
        )
        angles = d.unsqueeze(-1) * frequency
        E = torch.cat((torch.cos(angles), torch.sin(angles)), -1)
        return E

    @staticmethod
    def _dist(X, coord_mask, padding_mask, top_k_neighbors, eps=1e-8):
        """ Pairwise euclidean distances """
        bsz, maxlen = X.size(0), X.size(1)
        coord_mask_2D = torch.unsqueeze(coord_mask,1) * torch.unsqueeze(coord_mask,2)
        residue_mask = ~padding_mask
        residue_mask_2D = torch.unsqueeze(residue_mask,1) * torch.unsqueeze(residue_mask,2)
        dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
        D = coord_mask_2D * norm(dX, dim=-1)
    
        # sorting preference: first those with coords, then among the residues that
        # exist but are masked use distance in sequence as tie breaker, and then the
        # residues that came from padding are last
        seqpos = torch.arange(maxlen, device=X.device)
        Dseq = torch.abs(seqpos.unsqueeze(1) - seqpos.unsqueeze(0)).repeat(bsz, 1, 1)
        D_adjust = nan_to_num(D) + (~coord_mask_2D) * (1e8 + Dseq*1e6) + (
            ~residue_mask_2D) * (1e10)
    
        if top_k_neighbors == -1:
            D_neighbors = D_adjust
            E_idx = seqpos.repeat(
                    *D_neighbors.shape[:-1], 1)
        else:
            # Identify k nearest neighbors (including self)
            k = min(top_k_neighbors, X.size(1))
            D_neighbors, E_idx = torch.topk(D_adjust, k, dim=-1, largest=False)
    
        coord_mask_neighbors = (D_neighbors < 5e7)
        residue_mask_neighbors = (D_neighbors < 5e9)
        return D_neighbors, E_idx, coord_mask_neighbors, residue_mask_neighbors


class Normalize(nn.Module):
    def __init__(self, features, epsilon=1e-6):
        super(Normalize, self).__init__()
        self.gain = nn.Parameter(torch.ones(features))
        self.bias = nn.Parameter(torch.zeros(features))
        self.epsilon = epsilon

    def forward(self, x, dim=-1):
        mu = x.mean(dim, keepdim=True)
        sigma = torch.sqrt(x.var(dim, keepdim=True) + self.epsilon)
        gain = self.gain
        bias = self.bias
        # Reshape
        if dim != -1:
            shape = [1] * len(mu.size())
            shape[dim] = self.gain.size()[0]
            gain = gain.view(shape)
            bias = bias.view(shape)
        return gain * (x - mu) / (sigma + self.epsilon) + bias


class DihedralFeatures(nn.Module):
    def __init__(self, node_embed_dim):
        """ Embed dihedral angle features. """
        super(DihedralFeatures, self).__init__()
        # 3 dihedral angles; sin and cos of each angle
        node_in = 6
        # Normalization and embedding
        self.node_embedding = nn.Linear(node_in,  node_embed_dim, bias=True)
        self.norm_nodes = Normalize(node_embed_dim)

    def forward(self, X):
        """ Featurize coordinates as an attributed graph """
        V = self._dihedrals(X)
        V = self.node_embedding(V)
        V = self.norm_nodes(V)
        return V

    @staticmethod
    def _dihedrals(X, eps=1e-7, return_angles=False):
        # First 3 coordinates are N, CA, C
        X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3)

        # Shifted slices of unit vectors
        dX = X[:,1:,:] - X[:,:-1,:]
        U = F.normalize(dX, dim=-1)
        u_2 = U[:,:-2,:]
        u_1 = U[:,1:-1,:]
        u_0 = U[:,2:,:]
        # Backbone normals
        n_2 = F.normalize(torch.cross(u_2, u_1, dim=-1), dim=-1)
        n_1 = F.normalize(torch.cross(u_1, u_0, dim=-1), dim=-1)

        # Angle between normals
        cosD = (n_2 * n_1).sum(-1)
        cosD = torch.clamp(cosD, -1+eps, 1-eps)
        D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)

        # This scheme will remove phi[0], psi[-1], omega[-1]
        D = F.pad(D, (1,2), 'constant', 0)
        D = D.view((D.size(0), int(D.size(1)/3), 3))
        phi, psi, omega = torch.unbind(D,-1)

        if return_angles:
            return phi, psi, omega

        # Lift angle representations to the circle
        D_features = torch.cat((torch.cos(D), torch.sin(D)), 2)
        return D_features


class GVPGraphEmbedding(GVPInputFeaturizer):

    def __init__(self, args):
        super().__init__()
        self.top_k_neighbors = args.top_k_neighbors
        self.num_positional_embeddings = 16
        self.remove_edges_without_coords = True
        node_input_dim = (7, 3)
        edge_input_dim = (34, 1)
        node_hidden_dim = (args.node_hidden_dim_scalar,
                args.node_hidden_dim_vector)
        edge_hidden_dim = (args.edge_hidden_dim_scalar,
                args.edge_hidden_dim_vector)
        self.embed_node = nn.Sequential(
            GVP(node_input_dim, node_hidden_dim, activations=(None, None)),
            LayerNorm(node_hidden_dim, eps=1e-4)
        )
        self.embed_edge = nn.Sequential(
            GVP(edge_input_dim, edge_hidden_dim, activations=(None, None)),
            LayerNorm(edge_hidden_dim, eps=1e-4)
        )
        self.embed_confidence = nn.Linear(16, args.node_hidden_dim_scalar)

    def forward(self, coords, coord_mask, padding_mask, confidence):
        with torch.no_grad():
            node_features = self.get_node_features(coords, coord_mask)
            edge_features, edge_index = self.get_edge_features(
                coords, coord_mask, padding_mask)
        node_embeddings_scalar, node_embeddings_vector = self.embed_node(node_features)
        edge_embeddings = self.embed_edge(edge_features)

        rbf_rep = rbf(confidence, 0., 1.)
        node_embeddings = (
            node_embeddings_scalar + self.embed_confidence(rbf_rep),
            node_embeddings_vector
        )

        node_embeddings, edge_embeddings, edge_index = flatten_graph(
            node_embeddings, edge_embeddings, edge_index)
        return node_embeddings, edge_embeddings, edge_index

    def get_edge_features(self, coords, coord_mask, padding_mask):
        X_ca = coords[:, :, 1]
        # Get distances to the top k neighbors
        E_dist, E_idx, E_coord_mask, E_residue_mask = GVPInputFeaturizer._dist(
                X_ca, coord_mask, padding_mask, self.top_k_neighbors)
        # Flatten the graph to be batch size 1 for torch_geometric package 
        dest = E_idx
        B, L, k = E_idx.shape[:3]
        src = torch.arange(L, device=E_idx.device).view([1, L, 1]).expand(B, L, k)
        # After flattening, [2, B, E]
        edge_index = torch.stack([src, dest], dim=0).flatten(2, 3)
        # After flattening, [B, E]
        E_dist = E_dist.flatten(1, 2)
        E_coord_mask = E_coord_mask.flatten(1, 2).unsqueeze(-1)
        E_residue_mask = E_residue_mask.flatten(1, 2)
        # Calculate relative positional embeddings and distance RBF 
        pos_embeddings = GVPInputFeaturizer._positional_embeddings(
            edge_index,
            num_positional_embeddings=self.num_positional_embeddings,
        )
        D_rbf = rbf(E_dist, 0., 20.)
        # Calculate relative orientation 
        X_src = X_ca.unsqueeze(2).expand(-1, -1, k, -1).flatten(1, 2)
        X_dest = torch.gather(
            X_ca,
            1,
            edge_index[1, :, :].unsqueeze(-1).expand([B, L*k, 3])
        )
        coord_mask_src = coord_mask.unsqueeze(2).expand(-1, -1, k).flatten(1, 2)
        coord_mask_dest = torch.gather(
            coord_mask,
            1,
            edge_index[1, :, :].expand([B, L*k])
        )
        E_vectors = X_src - X_dest
        # For the ones without coordinates, substitute in the average vector
        E_vector_mean = torch.sum(E_vectors * E_coord_mask, dim=1,
                keepdims=True) / torch.sum(E_coord_mask, dim=1, keepdims=True)
        E_vectors = E_vectors * E_coord_mask + E_vector_mean * ~(E_coord_mask)
        # Normalize and remove nans 
        edge_s = torch.cat([D_rbf, pos_embeddings], dim=-1)
        edge_v = normalize(E_vectors).unsqueeze(-2)
        edge_s, edge_v = map(nan_to_num, (edge_s, edge_v))
        # Also add indications of whether the coordinates are present 
        edge_s = torch.cat([
            edge_s,
            (~coord_mask_src).float().unsqueeze(-1),
            (~coord_mask_dest).float().unsqueeze(-1),
        ], dim=-1)
        edge_index[:, ~E_residue_mask] = -1
        if self.remove_edges_without_coords:
            edge_index[:, ~E_coord_mask.squeeze(-1)] = -1
        return (edge_s, edge_v), edge_index.transpose(0, 1)