File size: 3,841 Bytes
85ab89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import argparse
import os
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import yaml
# import esm
import minigpt4.tasks as tasks
from minigpt4.esm.esm_config import Config
from minigpt4.common.dist_utils import get_rank, init_distributed_mode
from minigpt4.common.logger import setup_logger
from minigpt4.common.optims import (
    LinearWarmupCosineLRScheduler,
    LinearWarmupStepLRScheduler,
)
from minigpt4.common.registry import registry
from minigpt4.common.utils import now

# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.datasets.pdb_dataset import ESMDataset 
from minigpt4.datasets.qa_dataset import QADataset 
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *


def parse_args():
    parser = argparse.ArgumentParser(description="Training")

    parser.add_argument("--cfg-path", required=False, help="path to configuration file.", 
                        default='configs/train_modality_alignment.yaml')
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )

    args = parser.parse_args()
    # if 'LOCAL_RANK' not in os.environ:
    #     os.environ['LOCAL_RANK'] = str(args.local_rank)

    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


def get_runner_class(cfg):
    """
    Get runner class from config. Default to epoch-based runner.
    """
    runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))

    return runner_cls

def is_stage_1_training(cfg):
    return cfg.to_dict()["run"]["stage"] == 1


def main():
    # allow auto-dl completes on main process without timeout when using NCCL backend.
    # os.environ["NCCL_BLOCKING_WAIT"] = "1"

    # set before init_distributed_mode() to ensure the same job_id shared across all ranks.
    job_id = now()
    cfg = Config(parse_args())
    init_distributed_mode(cfg.run_cfg)
    setup_seeds(cfg)
    # set after init_distributed_mode() to only log on master.
    setup_logger()
    cfg.pretty_print()
    task = tasks.setup_task(cfg)

    datasets_raw = []
    if (is_stage_1_training(cfg)):
        datasets_raw = ESMDataset(pdb_root="/home/ubuntu/pt/",
                                seq_root="/home/ubuntu/seq/",
                                ann_paths="/home/ubuntu/proteinchat/data/esm_subset/abstract.json",
                                dataset_description="/home/ubuntu/dataset.json",
                                chain="A")
    else:
        datasets_raw = QADataset(pdb_root="/home/ubuntu/pt/",
                                seq_root="/home/ubuntu/seq/",
                                # ann_paths="/home/ubuntu/proteinchat/data/esm_subset/qa_all.json",
                                ann_paths="/home/ubuntu/proteinchat/data/esm_subset/GPT_merged_summary.json",
                                # dataset_description="/home/ubuntu/dataset.json",
                                chain="A")

    datasets = {'esm': {'train': datasets_raw}}
    model = task.build_model(cfg)

    runner = get_runner_class(cfg)(
        cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
    )

    runner.train()


if __name__ == "__main__":
    main()