File size: 15,041 Bytes
8691fee
 
41ec323
8691fee
 
 
41ec323
8691fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
 
8691fee
 
 
 
 
41ec323
8691fee
41ec323
 
 
 
 
 
 
 
8691fee
41ec323
8691fee
 
41ec323
 
 
8691fee
 
 
 
 
 
 
41ec323
8691fee
 
41ec323
8691fee
 
41ec323
8691fee
 
 
 
 
 
 
 
 
41ec323
8691fee
 
 
 
432dbc1
8691fee
 
 
 
 
 
41ec323
8691fee
 
 
 
 
41ec323
 
 
 
 
8691fee
41ec323
8691fee
 
 
 
 
 
 
41ec323
8691fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
8691fee
 
 
 
 
41ec323
 
 
8691fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
8691fee
41ec323
8691fee
 
 
41ec323
8691fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
 
 
 
 
 
 
8691fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#########################################################################################
# Title:  Gradio Interface to LLM-chatbot with memory RAG on premises 
# Author: Andreas Fischer
# Date:   October 15th, 2023
# Last update: February 22st, 2024
##########################################################################################

#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v

# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()

import os
from datetime import datetime
global filename
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file
if(os.path.exists(filename)==True): os.remove(filename) 

# Chroma-DB
#-----------
import os
import chromadb
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db" 
onPrem = True if(os.path.exists(dbPath)) else False 
if(onPrem==False): dbPath="/home/user/app/db"

#onPrem=False # override automatic detection
print(dbPath)

#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat()) 
print(client.get_version())  
print(client.list_collections()) 
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")

embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
print(str(client.list_collections()))

global collection
dbName="historicalChromaDB1"

if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection

if("name="+dbName in str(client.list_collections())):
  print(dbName+" found!")
  collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef)
else:
  #client.delete_collection(name=dbName)
  print(dbName+" created!")
  collection = client.create_collection(
    dbName,
    embedding_function=embeddingModel,
    metadata={"hnsw:space": "cosine"})

print("Database ready!")
print(collection.count()) 

x=collection.get(include=[])["ids"]
if(len(x)==0):
  message="Ich bin der User."
  response="Hallo User, wie kann ich dienen?"
  x=collection.get(include=[])["ids"]
  collection.add(
    documents=[message,response], 
    metadatas=[
      {"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}"},
      {"source": "DU",  "dialog": f"ICH: {message}\nDU: {response}"}
    ], 
    ids=[str(len(x)+1),str(len(x)+2)] 
  )
  RAGResults=collection.query(
      query_texts=[message],
      n_results=1,
      #where={"source": "USER"}
  )
  RAGResults["metadatas"][0][0]["dialog"]

collection.get()["ids","documents"]
x=collection.get(include=[])["ids"]
x



# Model
#-------
#onPrem=False

if(onPrem==False): 
  modelPath="mistralai/Mixtral-8x7B-Instruct-v0.1"
  from huggingface_hub import InferenceClient
  import gradio as gr
  client = InferenceClient(
    modelPath
    #"mistralai/Mixtral-8x7B-Instruct-v0.1"
    #"mistralai/Mistral-7B-Instruct-v0.1"
  )
else:
  import os
  import requests
  import subprocess
  ##modelPath="/home/af/gguf/models/phi-2.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/openchat-3.5-0106.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/decilm-7b-uniform-gqa-q8_0.gguf"
  #modelPath="/home/af/gguf/models/wizardlm-13b-v1.2.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/SauerkrautLM-7b-HerO-q8_0.gguf"
  #modelPath="/home/af/gguf/models/gemma-2b-it-Q4_0.gguf"
  modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf"
  modelPath="/home/af/gguf/models/gemma-7b-it-Q4_K_M.gguf"
  modelPath="/home/af/gguf/models/gemma-7b-it-Q4_0.gguf"
  #modelPath="/home/af/gguf/models/sauerkrautlm-una-solar-instruct.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/dolphin-2.5-mixtral-8x7b.Q4_0.gguf"
  #modelPath="/home/af/gguf/models/nous-hermes-2-mixtral-8x7b-dpo.Q4_0.gguf"
  if(os.path.exists(modelPath)==False):
    #url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
    #url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
    #url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
    url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
    response = requests.get(url)
    with open("./model.gguf", mode="wb") as file:
      file.write(response.content)
    print("Model downloaded")  
    modelPath="./model.gguf"
  print(modelPath)
  n="20" 
  if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
  command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
  subprocess.Popen(command)
  print("Server ready!")


#import llama_cpp
#llama_cpp.llama_backend_init(numa=False)
#params=llama_cpp.llama_context_default_params()
#params.n_ctx

# Gradio-GUI
#------------

def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf")
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
  template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
  template1="[INST] {message} [/INST] "
  template2="{response}</s>"
  if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"
  if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
    template1="[INST] {message} [/INST] "
    template2="{response}</s>"
  if("gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    template0="<start_of_turn>user{system}</end_of_turn>" 
    template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
    template2="{response}</end_of_turn>"
  if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
    template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
    template1="[INST] {message} [/INST] "
    template2="{response}</s>"
  if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
    template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
    template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
    template2="{response}<|end_of_turn|>"
  if("SauerkrautLM-7b-HerO" in modelPath):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"
  if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
    template0="{system} " #<s>
    template1="USER: {message} ASSISTANT: "
    template2="{response}</s>"
  if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
    template0="Instruct: {system}\nOutput: Okay.\n"
    template1="Instruct: {message}\nOutput:"
    template2="{response}\n"  
  prompt = ""
  if RAGAddon is not None:
    system += RAGAddon
  if system is not None:
    prompt += template0.format(system=system) #"<s>"
  if history is not None:
    for user_message, bot_response in history[-historylimit:]:
      if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])  #"[INST] {user_prompt} [/INST] "
      if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response}</s> "
  if message is not None: prompt += template1.format(message=message[:zeichenlimit])                #"[INST] {message} [/INST]"
  if system2 is not None:
    prompt += system2
  return prompt

import gradio as gr
import requests
import json
from datetime import datetime
import os
import re

def response(message, history,customSysPrompt,settings):
  #print(str(history)) # print history
  #system="Du bist ein KI-basierter Assistent." 
  system="Lass uns ein Rollenspiel spielen. Wir spielen Shadowrun. Du bist der Spielleiter und sprichst Deutsch." if customSysPrompt is None else customSysPrompt
  message=message.replace("[INST]","")
  message=message.replace("[/INST]","")
  message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
  if (settings=="Permanent"):
    if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available)
  x=collection.get(include=[])["ids"]
  rag=None # RAG is turned off until history gets too long
  historylimit=4
  if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit 
    RAGResults=collection.query(
      query_texts=[message],
      n_results=1,
      #where={"source": "USER"}
    )
    bestMatch=str(RAGResults["metadatas"][0][0]["dialog"])
    #print("Message: "+message+"\n\nBest Match: "+bestMatch)
    rag="\n\n"
    rag += "Mit Blick auf den aktuellen Stand der Session erinnerst du dich insb. an folgende Episode:\n"
    rag += bestMatch 
    rag += "\n\nIm Folgenden siehst du den aktuellen Stand der Session."
    rag += "Bitte beschreibe kurz den weiteren Verlauf bis zur nächsten Handlung des Spielers!"
  else:
    system += "\nBitte beschreibe kurz den weiteren Verlauf bis zur nächsten Handlung des Spielers!"
  system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
  #print("RAG: "+rag)  
  #print("System: "+system+"\n\nMessage: "+message)
  prompt=extend_prompt(message,history,system,rag,system2,historylimit=historylimit)
  print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
  
  ## Request response from model
  #------------------------------
  
  print("AI running on prem!" if(onPrem) else "AI running HFHub!")
  if(onPrem==False):
    temperature=float(0.9) 
    max_new_tokens=500 
    top_p=0.95 
    repetition_penalty=1.0
    if temperature < 1e-2: temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    response = ""
    #print("User: "+message+"\nAI: ")
    for text in stream:
        part=text.token.text
        #print(part, end="", flush=True)
        response += part
        yield response
    history.append((message, response)) # add current dialog to history
    # Store current state in DB if settings=="Permanent"
    if (settings=="Permanent"):
      x=collection.get(include=[])["ids"] # add current dialog to db
      collection.add(
        documents=[message,response], 
        metadatas=[
          { "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
          { "source": "DU",  "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
        ], 
        ids=[str(len(x)+1),str(len(x)+2)] 
      )
      json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)
 
  if(onPrem==True):
    # url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
    url="http://0.0.0.0:2600/v1/completions"  
    body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"}            # e.g. Mixtral-Instruct
    if("discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]})         # fix stop-token of DiscoLM
    if("gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]})   # fix stop-token of Gemma
    response="" #+"("+myType+")\n"
    buffer=""
    #print("URL: "+url)
    #print("User: "+message+"\nAI: ")
    for text in requests.post(url, json=body, stream=True):  #-H 'accept: application/json' -H 'Content-Type: application/json'
      if buffer is None: buffer=""
      buffer=str("".join(buffer))
      # print("*** Raw String: "+str(text)+"\n***\n")
      text=text.decode('utf-8')
      if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
      # print("\n*** Buffer: "+str(buffer)+"\n***\n") 
      buffer=buffer.split('"finish_reason": null}]}')
      if(len(buffer)==1):
        buffer="".join(buffer)
        pass
      if(len(buffer)==2):
        part=buffer[0]+'"finish_reason": null}]}'  
        if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
        try: 
          part = str(json.loads(part)["choices"][0]["text"])
          #print(part, end="", flush=True)
          response=response+part
          buffer="" # reset buffer
        except Exception as e:
          print("Exception:"+str(e))
          pass
      yield response
    history.append((message, response)) # add current dialog to history
    # Store current state in DB if settings=="Permanent"
    if (settings=="Permanent"):
      x=collection.get(include=[])["ids"] # add current dialog to db
      collection.add(
        documents=[message,response], 
        metadatas=[
          { "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
          { "source": "DU",  "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
        ], 
        ids=[str(len(x)+1),str(len(x)+2)] 
      )
      json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)

gr.ChatInterface(
  response, 
  chatbot=gr.Chatbot(render_markdown=True),
  title="AI-Interface (on prem)" if onPrem else "AI-Interface (HFHub)",
  additional_inputs=[
    gr.Textbox(value="Lass uns ein Rollenspiel spielen. Wir spielen Shadowrun. Du bist der Spielleiter und sprichst Deutsch.",label="System Prompt"),
    gr.Dropdown(["Permanent","Temporär"],value="Temorär",label="Dialog speichern?")
  ]
  ).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")