Spaces:
Runtime error
Runtime error
File size: 15,041 Bytes
8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 432dbc1 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee 41ec323 8691fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
#########################################################################################
# Title: Gradio Interface to LLM-chatbot with memory RAG on premises
# Author: Andreas Fischer
# Date: October 15th, 2023
# Last update: February 22st, 2024
##########################################################################################
#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()
import os
from datetime import datetime
global filename
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file
if(os.path.exists(filename)==True): os.remove(filename)
# Chroma-DB
#-----------
import os
import chromadb
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db"
#onPrem=False # override automatic detection
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
print(str(client.list_collections()))
global collection
dbName="historicalChromaDB1"
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection
if("name="+dbName in str(client.list_collections())):
print(dbName+" found!")
collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef)
else:
#client.delete_collection(name=dbName)
print(dbName+" created!")
collection = client.create_collection(
dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
print("Database ready!")
print(collection.count())
x=collection.get(include=[])["ids"]
if(len(x)==0):
message="Ich bin der User."
response="Hallo User, wie kann ich dienen?"
x=collection.get(include=[])["ids"]
collection.add(
documents=[message,response],
metadatas=[
{"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}"},
{"source": "DU", "dialog": f"ICH: {message}\nDU: {response}"}
],
ids=[str(len(x)+1),str(len(x)+2)]
)
RAGResults=collection.query(
query_texts=[message],
n_results=1,
#where={"source": "USER"}
)
RAGResults["metadatas"][0][0]["dialog"]
collection.get()["ids","documents"]
x=collection.get(include=[])["ids"]
x
# Model
#-------
#onPrem=False
if(onPrem==False):
modelPath="mistralai/Mixtral-8x7B-Instruct-v0.1"
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
modelPath
#"mistralai/Mixtral-8x7B-Instruct-v0.1"
#"mistralai/Mistral-7B-Instruct-v0.1"
)
else:
import os
import requests
import subprocess
##modelPath="/home/af/gguf/models/phi-2.Q4_0.gguf"
#modelPath="/home/af/gguf/models/openchat-3.5-0106.Q4_0.gguf"
#modelPath="/home/af/gguf/models/decilm-7b-uniform-gqa-q8_0.gguf"
#modelPath="/home/af/gguf/models/wizardlm-13b-v1.2.Q4_0.gguf"
#modelPath="/home/af/gguf/models/SauerkrautLM-7b-HerO-q8_0.gguf"
#modelPath="/home/af/gguf/models/gemma-2b-it-Q4_0.gguf"
modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf"
modelPath="/home/af/gguf/models/gemma-7b-it-Q4_K_M.gguf"
modelPath="/home/af/gguf/models/gemma-7b-it-Q4_0.gguf"
#modelPath="/home/af/gguf/models/sauerkrautlm-una-solar-instruct.Q4_0.gguf"
#modelPath="/home/af/gguf/models/mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
#modelPath="/home/af/gguf/models/dolphin-2.5-mixtral-8x7b.Q4_0.gguf"
#modelPath="/home/af/gguf/models/nous-hermes-2-mixtral-8x7b-dpo.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
#url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
response = requests.get(url)
with open("./model.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./model.gguf"
print(modelPath)
n="20"
if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
subprocess.Popen(command)
print("Server ready!")
#import llama_cpp
#llama_cpp.llama_backend_init(numa=False)
#params=llama_cpp.llama_context_default_params()
#params.n_ctx
# Gradio-GUI
#------------
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf")
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
template1="[INST] {message} [/INST] "
template2="{response}</s>"
if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
template1="[INST] {message} [/INST] "
template2="{response}</s>"
if("gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
template0="<start_of_turn>user{system}</end_of_turn>"
template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
template2="{response}</end_of_turn>"
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
template0="[INST] {system} [/INST]</s>" if onPrem else "[INST] {system} [/INST]</s>" #<s>?
template1="[INST] {message} [/INST] "
template2="{response}</s>"
if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
template2="{response}<|end_of_turn|>"
if("SauerkrautLM-7b-HerO" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
template0="{system} " #<s>
template1="USER: {message} ASSISTANT: "
template2="{response}</s>"
if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
template0="Instruct: {system}\nOutput: Okay.\n"
template1="Instruct: {message}\nOutput:"
template2="{response}\n"
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) #"[INST] {user_prompt} [/INST] "
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response}</s> "
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) #"[INST] {message} [/INST]"
if system2 is not None:
prompt += system2
return prompt
import gradio as gr
import requests
import json
from datetime import datetime
import os
import re
def response(message, history,customSysPrompt,settings):
#print(str(history)) # print history
#system="Du bist ein KI-basierter Assistent."
system="Lass uns ein Rollenspiel spielen. Wir spielen Shadowrun. Du bist der Spielleiter und sprichst Deutsch." if customSysPrompt is None else customSysPrompt
message=message.replace("[INST]","")
message=message.replace("[/INST]","")
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
if (settings=="Permanent"):
if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available)
x=collection.get(include=[])["ids"]
rag=None # RAG is turned off until history gets too long
historylimit=4
if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit
RAGResults=collection.query(
query_texts=[message],
n_results=1,
#where={"source": "USER"}
)
bestMatch=str(RAGResults["metadatas"][0][0]["dialog"])
#print("Message: "+message+"\n\nBest Match: "+bestMatch)
rag="\n\n"
rag += "Mit Blick auf den aktuellen Stand der Session erinnerst du dich insb. an folgende Episode:\n"
rag += bestMatch
rag += "\n\nIm Folgenden siehst du den aktuellen Stand der Session."
rag += "Bitte beschreibe kurz den weiteren Verlauf bis zur nächsten Handlung des Spielers!"
else:
system += "\nBitte beschreibe kurz den weiteren Verlauf bis zur nächsten Handlung des Spielers!"
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
#print("RAG: "+rag)
#print("System: "+system+"\n\nMessage: "+message)
prompt=extend_prompt(message,history,system,rag,system2,historylimit=historylimit)
print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
## Request response from model
#------------------------------
print("AI running on prem!" if(onPrem) else "AI running HFHub!")
if(onPrem==False):
temperature=float(0.9)
max_new_tokens=500
top_p=0.95
repetition_penalty=1.0
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
response = ""
#print("User: "+message+"\nAI: ")
for text in stream:
part=text.token.text
#print(part, end="", flush=True)
response += part
yield response
history.append((message, response)) # add current dialog to history
# Store current state in DB if settings=="Permanent"
if (settings=="Permanent"):
x=collection.get(include=[])["ids"] # add current dialog to db
collection.add(
documents=[message,response],
metadatas=[
{ "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
{ "source": "DU", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
],
ids=[str(len(x)+1),str(len(x)+2)]
)
json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)
if(onPrem==True):
# url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
url="http://0.0.0.0:2600/v1/completions"
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct
if("discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM
if("gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]}) # fix stop-token of Gemma
response="" #+"("+myType+")\n"
buffer=""
#print("URL: "+url)
#print("User: "+message+"\nAI: ")
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
if buffer is None: buffer=""
buffer=str("".join(buffer))
# print("*** Raw String: "+str(text)+"\n***\n")
text=text.decode('utf-8')
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
# print("\n*** Buffer: "+str(buffer)+"\n***\n")
buffer=buffer.split('"finish_reason": null}]}')
if(len(buffer)==1):
buffer="".join(buffer)
pass
if(len(buffer)==2):
part=buffer[0]+'"finish_reason": null}]}'
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
try:
part = str(json.loads(part)["choices"][0]["text"])
#print(part, end="", flush=True)
response=response+part
buffer="" # reset buffer
except Exception as e:
print("Exception:"+str(e))
pass
yield response
history.append((message, response)) # add current dialog to history
# Store current state in DB if settings=="Permanent"
if (settings=="Permanent"):
x=collection.get(include=[])["ids"] # add current dialog to db
collection.add(
documents=[message,response],
metadatas=[
{ "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
{ "source": "DU", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
],
ids=[str(len(x)+1),str(len(x)+2)]
)
json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)
gr.ChatInterface(
response,
chatbot=gr.Chatbot(render_markdown=True),
title="AI-Interface (on prem)" if onPrem else "AI-Interface (HFHub)",
additional_inputs=[
gr.Textbox(value="Lass uns ein Rollenspiel spielen. Wir spielen Shadowrun. Du bist der Spielleiter und sprichst Deutsch.",label="System Prompt"),
gr.Dropdown(["Permanent","Temporär"],value="Temorär",label="Dialog speichern?")
]
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")
|