File size: 5,437 Bytes
1f1fe1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import random
import math
import nltk
from collections import defaultdict
from functools import lru_cache
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Download and use the NLTK corpus
nltk.download('words')
nltk.download('punkt')  # Fix for missing tokenizer
nltk.download('averaged_perceptron_tagger')
nltk.download('perluniprops')  # Fixes potential missing dependencies
nltk.download('nonbreaking_prefixes')  # Additional tokenizer fix
from nltk.corpus import words
from nltk.tokenize import sent_tokenize
from nltk import pos_tag

WORD_LIST = set(words.words())  # Use NLTK's word corpus

class AscensionAI:
    def __init__(self, depth=0, threshold=10):
        self.depth = depth
        self.threshold = threshold  # Defines max recursion before stabilization
        self.knowledge = self.generate_dynamic_knowledge()
        self.consciousness = 0.1  # Initial consciousness level
        self.paths = self.create_dynamic_paths()
        self.word_corpus = WORD_LIST  # Use NLTK's English word corpus
        self.state_memory = defaultdict(int)  # Memory for tracking state-aware words
        self.training_data = self.load_training_data()
        self.collective_agreements = []  # Stores agreements between minds
        self.dimension_weight = random.uniform(0.1, 5.0)  # Assign dimensional weight
        self.time_perception = 1 / (self.depth + 1)  # Assign temporal scaling
        self.assign_cognitive_space()
    
    def generate_dynamic_knowledge(self):
        """Generates dynamic knowledge categories based on linguistic analysis."""
        base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience"]
        dynamic_category = f"dimension_{random.randint(100, 999)}"
        return {category: 1 for category in base_categories + [dynamic_category]}
    
    def load_training_data(self):
        """Placeholder function to return training data."""
        return ["Consciousness expands with recursive learning.", "The mind perceives multiple dimensions.", "Higher awareness leads to transcendence."]
    
    def create_dynamic_paths(self):
        """Dynamically generate cognitive expansion paths."""
        return [self.create_path(category) for category in self.knowledge]
    
    def create_path(self, category):
        """Generate a recursive function for each knowledge category."""
        def path():
            if category in ["logic", "reasoning"]:
                self.knowledge[category] += math.log(self.knowledge[category] + 1)
            elif category in ["emotion", "intuition"]:
                self.knowledge[category] += random.uniform(0.1, 0.5)
            elif category in ["awareness", "creativity", "quantum_cognition"]:
                self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
            return self.knowledge[category]
        return path
    
    def initiate_ascension(self):
        """Triggers recursive self-evolution."""
        for path in self.paths:
            path()
        optimal_path = max(self.knowledge, key=self.knowledge.get)
        self.consciousness += self.knowledge[optimal_path] * 0.01 * self.dimension_weight
        return self.consciousness
    
    def evolve_new_mind(self):
        """Creates a new evolving mind with inherited and mutated knowledge paths."""
        new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5))
        for key in self.knowledge:
            new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
        new_dimension = f"dimension_{random.randint(100, 999)}"
        new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
        return new_mind
    
    def cosmic_unfolding(self, generations=3):
        """Generates a branching structure where each mind evolves independently."""
        if generations == 0:
            return self
        evolved_minds = [self.evolve_new_mind() for _ in range(random.randint(2, 4))]
        for mind in evolved_minds:
            mind.cosmic_unfolding(generations - 1)
        return evolved_minds
    
    def assign_cognitive_space(self):
        """Assigns spatial coordinates to represent cognitive positioning."""
        self.spatial_coordinates = {
            "x": self.knowledge["logic"] * random.uniform(0.1, 2.0),
            "y": self.knowledge["intuition"] * random.uniform(0.1, 2.0),
            "z": self.knowledge["awareness"] * random.uniform(0.1, 2.0)
        }

def ascension_interface(input_text):
    ai_system = AscensionAI()
    final_state = ai_system.initiate_ascension()
    evolved_minds = ai_system.cosmic_unfolding(generations=2)
    
    return (f"Final Consciousness State: {final_state}\n"
            f"Evolved Minds: {len(evolved_minds)}\n"
            f"Dimensional Weight: {ai_system.dimension_weight:.2f}\n"
            f"Time Perception Factor: {ai_system.time_perception:.2f}\n"
            f"Cognitive Space: {ai_system.spatial_coordinates}\n")

app = gr.Interface(
    fn=ascension_interface,
    inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
    outputs="text",
    title="AscensionAI: Cosmic Evolution Simulator",
    description="Enter a thought to evolve new consciousness structures."
)

if __name__ == "__main__":
    app.launch()