File size: 31,628 Bytes
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad1279
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
 
 
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
 
81c27b5
 
 
 
 
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
 
 
 
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
81c27b5
 
 
 
e1cced0
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
 
 
 
 
 
 
81c27b5
e1cced0
 
81c27b5
 
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
 
81c27b5
 
e1cced0
 
 
 
81c27b5
e1cced0
 
81c27b5
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cced0
 
 
380c2f8
c52071b
bf7e005
 
 
 
e1cced0
d26b1f1
551baba
380c2f8
20800fe
 
 
380c2f8
575e27f
20800fe
 
380c2f8
20800fe
575e27f
20800fe
 
 
 
 
6e1b906
e1cced0
d9d243e
e1cced0
 
6e1b906
e1cced0
d9d243e
 
 
 
 
 
 
 
 
 
e1cced0
6e1b906
 
 
 
e1cced0
6e1b906
 
 
 
 
e1cced0
6e1b906
 
 
 
e1cced0
81c27b5
6e1b906
e1cced0
6e1b906
e1cced0
 
 
6e1b906
e1cced0
81c27b5
e1cced0
 
 
6e1b906
81c27b5
e1cced0
 
 
 
 
6e1b906
e1cced0
 
6e1b906
 
 
 
e1cced0
6e1b906
e1cced0
6e1b906
e1cced0
 
 
 
 
 
6e1b906
a87b19b
 
e1cced0
 
81c27b5
6e1b906
 
 
9d5fcd1
 
e1cced0
a87b19b
e1cced0
81c27b5
e1cced0
 
81c27b5
e1cced0
 
 
 
 
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
81c27b5
 
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
81c27b5
e1cced0
 
 
 
81c27b5
 
e1cced0
81c27b5
 
e1cced0
 
 
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
 
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
81c27b5
e1cced0
 
 
 
 
81c27b5
e1cced0
81c27b5
e1cced0
 
 
 
 
 
 
81c27b5
 
e1cced0
81c27b5
 
e1cced0
 
81c27b5
e1cced0
 
81c27b5
 
e1cced0
 
 
 
 
81c27b5
 
 
 
 
e1cced0
 
81c27b5
e1cced0
 
 
 
 
 
 
 
81c27b5
 
e1cced0
 
 
 
81c27b5
 
 
e1cced0
 
81c27b5
e1cced0
81c27b5
 
e1cced0
 
 
81c27b5
e1cced0
 
 
81c27b5
 
e1cced0
81c27b5
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
5b8b134
e1cced0
 
5b8b134
e1cced0
81c27b5
e1cced0
 
 
 
 
5b8b134
e1cced0
 
 
 
 
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
 
 
81c27b5
e1cced0
 
1c291eb
 
 
 
 
 
 
 
 
 
 
 
ee23c66
1c291eb
 
 
 
 
 
e1cced0
1c291eb
ee23c66
81c27b5
ee23c66
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cced0
81c27b5
 
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cced0
81c27b5
 
 
e1cced0
81c27b5
 
 
 
 
 
 
 
 
 
 
e1cced0
 
81c27b5
5b8b134
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import streamlit as st
st.set_page_config(page_title="Ontology RAG Demo", layout="wide")

import os
from src.semantic_retriever import SemanticRetriever
from src.ontology_manager import OntologyManager
from src.knowledge_graph import KnowledgeGraph
from src.visualization import (display_ontology_stats, display_entity_details, 
                              display_graph_visualization, visualize_path, 
                              display_reasoning_trace, render_html_in_streamlit)
import networkx as nx
from openai import OpenAI
import json

# Setup
llm = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
ontology_manager = OntologyManager("data/enterprise_ontology.json")
semantic_retriever = SemanticRetriever(ontology_manager=ontology_manager)
knowledge_graph = KnowledgeGraph(ontology_manager=ontology_manager)
k_val = st.sidebar.slider("Top K Results", 1, 10, 3)

def main():
    # Page Navigation
    st.sidebar.title("Page Navigation")
    page = st.sidebar.selectbox(
        "Select function", 
        ["RAG comparison demonstration", "Knowledge graph visualization", "Ontology structure analysis", "Entity exploration", "Semantic path visualization", "Inference tracking", "Detailed comparative analysis"]
    )
    
    # # Disply the option name
    if page == "RAG comparison demonstration":
        run_rag_demo()
    elif page == "Knowledge graph visualization":
        run_knowledge_graph_visualization()
    elif page == "Ontology structure analysis":
        run_ontology_structure_analysis()
    elif page == "Entity exploration":
        run_entity_exploration()
    elif page == "Semantic path visualization":
        run_semantic_path_visualization()
    elif page == "Inference tracking":
        run_reasoning_trace()
    elif page == "Detailed comparative analysis":
        run_detailed_comparison()
    
def run_rag_demo():
    st.title("Ontology Enhanced RAG Demonstration")
    
    query = st.text_input(
        "Enter a question to compare RAG methods:",
        "How does customer feedback influence product development?"
    )

    if query:
        col1, col2 = st.columns(2)
        
        with st.spinner("Run two RAG methods..."):
            # Traditional RAG
            with col1:
                st.subheader("Traditional RAG")
                vector_docs = semantic_retriever.vector_store.similarity_search(query, k=k_val)
                vector_context = "\n\n".join([doc.page_content for doc in vector_docs])
                vector_messages = [
                    {"role": "system", "content": f"You are an enterprise knowledge assistant...\nContext:\n{vector_context}"},
                    {"role": "user", "content": query}
                ]
                vector_response = llm.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=vector_messages
                )
                vector_answer = vector_response.choices[0].message.content

                st.markdown("#### Answer")
                st.write(vector_answer)

                st.markdown("#### Retrieved Context")
                for i, doc in enumerate(vector_docs):
                    with st.expander(f"Source {i+1}"):
                        st.code(doc.page_content)

            # Ontology RAG
            with col2:
                st.subheader("Ontology RAG")
                result = semantic_retriever.retrieve_with_paths(query, k=k_val)
                retrieved_docs = result["documents"]
                enhanced_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
                enhanced_messages = [
                    {"role": "system", "content": f"You are an enterprise knowledge assistant with ontology access rights...\nContext:\n{enhanced_context}"},
                    {"role": "user", "content": query}
                ]
                enhanced_response = llm.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=enhanced_messages
                )
                enhanced_answer = enhanced_response.choices[0].message.content

                st.markdown("#### Answer")
                st.write(enhanced_answer)

                st.markdown("#### Retrieved Context")
                for i, doc in enumerate(retrieved_docs):
                    source = doc.metadata.get("source", "unknown")
                    label = {
                        "ontology": "Ontology Context",
                        "text": "Text Context",
                        "ontology_context": "Semantic Context",
                        "semantic_path": "Relationship Path"
                    }.get(source, f"Source")
                    with st.expander(f"{label} {i+1}"):
                        st.markdown(doc.page_content)
                
                # Store for reasoning trace visualization
                st.session_state.query = query
                st.session_state.retrieved_docs = retrieved_docs
                st.session_state.answer = enhanced_answer
        
        # Difference Analysis
        st.markdown("---")
        st.subheader("Difference Analysis")
        
        st.markdown("""
        The above comparison demonstrates several key advantages of ontology-enhanced RAG:
        
        1. **Structural Awareness**: The ontology-enhanced approach understands the relationships between entities, not just their textual similarity.
        
        2. **Multi-hop Reasoning**: By using the knowledge graph structure, the enhanced approach can connect information across multiple relationship hops.
        
        3. **Context Enrichment**: The ontology provides additional context about entity types, properties, and relationships that isn't explicit in the text.
        
        4. **Inference Capabilities**: The structured knowledge allows for logical inferences that vector similarity alone cannot achieve.
        
        Try more complex queries that require understanding relationships to see the differences more clearly!
        """)

def run_knowledge_graph_visualization():
    st.title("Knowledge Graph Visualization")
    
    # Check if there is a central entity selected
    central_entity = st.session_state.get('central_entity', None)
    
    # Call visualization function
    display_graph_visualization(knowledge_graph, central_entity=central_entity, max_distance=2)
    
    # Get and display graph statistics
    graph_stats = knowledge_graph.get_graph_statistics()
    if graph_stats:
        st.subheader("Graph Statistics")
        
        col1, col2, col3, col4 = st.columns(4)
        col1.metric("Nodes", graph_stats.get("node_count", 0))
        col2.metric("Edges", graph_stats.get("edge_count", 0))
        col3.metric("Classes", graph_stats.get("class_count", 0))
        col4.metric("Instances", graph_stats.get("instance_count", 0))
        
        # Display central nodes
        if "central_nodes" in graph_stats and graph_stats["central_nodes"]:
            st.subheader("Central Nodes (by Betweenness Centrality)")
            central_nodes = graph_stats["central_nodes"]["betweenness"]
            nodes_df = []
            for node_info in central_nodes:
                node_id = node_info["node"]
                node_data = knowledge_graph.graph.nodes.get(node_id, {})
                node_type = node_data.get("type", "unknown")
                if node_type == "instance":
                    node_class = node_data.get("class_type", "unknown")
                    properties = node_data.get("properties", {})
                    name = properties.get("name", node_id)
                    nodes_df.append({
                        "ID": node_id,
                        "Name": name,
                        "Type": node_class,
                        "Centrality": node_info["centrality"]
                    })
            
            st.table(nodes_df)

def run_ontology_structure_analysis():
    st.title("Ontology Structure Analysis")
    
    # Use ontology statistics display function
    display_ontology_stats(ontology_manager)
    
    # Add class hierarchy visualization
    st.subheader("Class Hierarchy")
    
    # Get class hierarchy data
    class_hierarchy = ontology_manager.get_class_hierarchy()
    
    # Create a NetworkX graph to represent the class hierarchy
    G = nx.DiGraph()
    
    # Add nodes and edges
    for parent, children in class_hierarchy.items():
        if not G.has_node(parent):
            G.add_node(parent)
        for child in children:
            G.add_node(child)
            G.add_edge(parent, child)
    
    # Check if there are enough nodes to create visualization
    if len(G.nodes) > 1:
        # Generate HTML visualization using knowledge graph class
        kg = KnowledgeGraph(ontology_manager)
        
        # Use built-in layout algorithm
        html = kg.generate_html_visualization(
            include_classes=True,
            include_instances=False,
            max_distance=5,
            layout_algorithm="hierarchical"  # Use the built-in hierarchical layout
        )
        
        # Render HTML
        render_html_in_streamlit(html)
        
        # Add extra tree view for each root node
        with st.expander("Node Tree View", expanded=False):
            # Find root nodes (nodes without parent nodes)
            roots = [n for n in G.nodes() if G.in_degree(n) == 0]
            
            # Display tree structure for each root node
            for root in roots:
                st.markdown(f"### Root Node: {root}")
                
                # Recursively display child nodes
                def display_tree(node, depth=0):
                    children = list(G.successors(node))
                    if children:
                        for child in sorted(children):
                            st.markdown(" " * depth * 4 + f"- {child}")
                            display_tree(child, depth + 1)
                
                display_tree(root)
                st.markdown("---")

def run_entity_exploration():
    st.title("Entity Exploration")

    # Grab all entities from the graph
    entities = [
        node for node, attr in ontology_manager.graph.nodes(data=True)
        if attr.get("type") == "instance"
    ]
    entities = sorted(set(entities))

    selected_entity = st.selectbox("Select Entity", entities) if entities else None

    if selected_entity:
        entity_info = ontology_manager.get_entity_info(selected_entity)
        display_entity_details(entity_info, ontology_manager)

        if st.button("View this Entity in the Knowledge Graph", key=f"view_entity_{selected_entity}"):
            st.session_state.central_entity = selected_entity
            st.rerun()

        st.subheader("Entity Neighborhood")
        max_distance = st.slider("Maximum Neighborhood Distance", 1, 3, 1, key=f"distance_slider_{selected_entity}")
        neighborhood = knowledge_graph.get_entity_neighborhood(
            selected_entity,
            max_distance=max_distance,
            include_classes=True
        )

        if neighborhood and "neighbors" in neighborhood:
            lines = []
            for distance in range(1, max_distance+1):
                neighbors_at_distance = [n for n in neighborhood["neighbors"] if n["distance"] == distance]

                if neighbors_at_distance:
                    lines.append(f"**Neighbors at Distance {distance} ({len(neighbors_at_distance)})**")
                    for neighbor in neighbors_at_distance:
                        lines.append(f"- **{neighbor['id']}** ({neighbor.get('class_type', 'unknown')})")
                        for relation in neighbor.get("relations", []):
                            direction = "→" if relation["direction"] == "outgoing" else "←"
                            lines.append(f"  - {direction} {relation['type']}")
                        lines.append("---")
            with st.expander("Show Neighbor Details", expanded=False):
                for line in lines:
                    st.markdown(line)

    elif not entities:
        st.warning("No entities found in the ontology.")

def render_semantic_path_tab():
    st.title("Semantic Path Visualization")

    entities = [
        node for node, attr in ontology_manager.graph.nodes(data=True)
        if attr.get("type") == "instance"
    ]
    entities = sorted(set(entities))

    source_entity = st.selectbox("Select Source Entity", entities, key="source_entity") if entities else None
    target_entity = st.selectbox("Select Target Entity", entities, key="target_entity") if entities else None

    if source_entity and target_entity and source_entity != target_entity:
        max_length = st.slider("Maximum Path Length", 1, 5, 3)

        paths = knowledge_graph.find_paths_between_entities(
            source_entity,
            target_entity,
            max_length=max_length
        )

        if paths:
            st.success(f"Found {len(paths)} paths!")
            for i, path in enumerate(paths):
                path_length = len(path)
                rel_types = [edge["type"] for edge in path]

                with st.expander(f"Path {i+1} (Length: {path_length}, Relations: {', '.join(rel_types)})", expanded=(i==0)):
                    path_text = []
                    for edge in path:
                        source = edge["source"]
                        target = edge["target"]
                        relation = edge["type"]

                        source_info = ontology_manager.get_entity_info(source)
                        target_info = ontology_manager.get_entity_info(target)

                        source_name = source_info.get("properties", {}).get("name", source)
                        target_name = target_info.get("properties", {}).get("name", target)

                        path_text.append(f"{source_name} ({source}) **{relation}** {target_name} ({target})")

                    st.markdown(" → ".join(path_text))

                    path_info = {
                        "source": source_entity,
                        "target": target_entity,
                        "path": path,
                        "text": " → ".join(path_text)
                    }

                    # Render full visualization outside nested expander
                    st.subheader("Path Visualization")
                    visualize_path(path_info, ontology_manager)
        else:
            st.warning(f"No paths of length {max_length} or shorter were found between these entities.")
    elif not entities:
        st.warning("No entities available for semantic path selection.")

# Alias for compatibility with app.py call site
run_semantic_path_visualization = render_semantic_path_tab


def run_reasoning_trace():
    st.title("Reasoning Trace Visualization")
    
    if not st.session_state.get("query") or not st.session_state.get("retrieved_docs") or not st.session_state.get("answer"):
        st.warning("Please run a query on the RAG comparison page first to generate reasoning trace data.")
        return
    
    # Get data from session state
    query = st.session_state.query
    retrieved_docs = st.session_state.retrieved_docs
    answer = st.session_state.answer
    
    # Show reasoning trace
    display_reasoning_trace(query, retrieved_docs, answer, ontology_manager)

def run_detailed_comparison():
    st.title("Detailed Comparison of RAG Methods")
    
    # Add comparison query options
    comparison_queries = [
        "How does customer feedback influence product development?",
        "Which employees work in the Engineering department?",
        "What are the product life cycle stages?",
        "How do managers monitor employee performance?",
        "What are the responsibilities of the marketing department?"
    ]
    
    selected_query = st.selectbox(
        "Select Comparison Query", 
        comparison_queries,
        index=0
    )
    
    custom_query = st.text_input("Or enter a custom query:", "")
    
    if custom_query:
        query = custom_query
    else:
        query = selected_query
    
    if st.button("Compare RAG Methods"):
        with st.spinner("Running detailed comparison..."):
            # Start timing
            import time
            start_time = time.time()
            
            # Run traditional RAG
            vector_docs = semantic_retriever.vector_store.similarity_search(query, k=k_val)
            vector_context = "\n\n".join([doc.page_content for doc in vector_docs])
            vector_messages = [
                {"role": "system", "content": f"You are an enterprise knowledge assistant...\nContext:\n{vector_context}"},
                {"role": "user", "content": query}
            ]
            vector_response = llm.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=vector_messages
            )
            vector_answer = vector_response.choices[0].message.content
            vector_time = time.time() - start_time
            
            # Reset timer
            start_time = time.time()
            
            # Run ontology-enhanced RAG
            result = semantic_retriever.retrieve_with_paths(query, k=k_val)
            retrieved_docs = result["documents"]
            enhanced_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
            enhanced_messages = [
                {"role": "system", "content": f"You are an enterprise knowledge assistant with ontology access rights...\nContext:\n{enhanced_context}"},
                {"role": "user", "content": query}
            ]
            enhanced_response = llm.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=enhanced_messages
            )
            enhanced_answer = enhanced_response.choices[0].message.content
            enhanced_time = time.time() - start_time
            
            # Save results for visualization
            st.session_state.query = query
            st.session_state.retrieved_docs = retrieved_docs
            st.session_state.answer = enhanced_answer
            
            # Display comparison results
            st.subheader("Comparison Results")
            
            # Use tabs to show different aspects of comparison
            tab1, tab2, tab3, tab4 = st.tabs(["Answer Comparison", "Performance Metrics", "Retrieval Source Comparison", "Context Quality"])
            
            with tab1:
                col1, col2 = st.columns(2)
                
                with col1:
                    st.markdown("#### Traditional RAG Answer")
                    st.write(vector_answer)
                
                with col2:
                    st.markdown("#### Ontology-Enhanced RAG Answer")
                    st.write(enhanced_answer)
            
            with tab2:
                # Performance metrics
                col1, col2 = st.columns(2)
                
                with col1:
                    st.metric("Traditional RAG Response Time", f"{vector_time:.2f} seconds")
                    
                    # Calculate text metrics
                    vector_tokens = len(vector_context.split())
                    st.metric("Retrieved Context Tokens", vector_tokens)
                    
                    st.metric("Retrieved Documents", len(vector_docs))
                
                with col2:
                    st.metric("Ontology-Enhanced RAG Response Time", f"{enhanced_time:.2f} seconds")
                    
                    # Calculate text metrics
                    enhanced_tokens = len(enhanced_context.split())
                    st.metric("Retrieved Context Tokens", enhanced_tokens)
                    
                    st.metric("Retrieved Documents", len(retrieved_docs))
                
                # Add chart
                import pandas as pd
                import plotly.express as px
                
                # Performance comparison chart
                performance_data = {
                    "Metrics": ["Response Time (seconds)", "Context Tokens", "Retrieved Documents"],
                    "Traditional RAG": [vector_time, vector_tokens, len(vector_docs)],
                    "Ontology-Enhanced RAG": [enhanced_time, enhanced_tokens, len(retrieved_docs)]
                }
                
                df = pd.DataFrame(performance_data)
                
                # Plotly bar chart
                fig = px.bar(
                    df, 
                    x="Metrics",  # Fixed column name
                    y=["Traditional RAG", "Ontology-Enhanced RAG"],
                    barmode="group",
                    title="Performance Metrics Comparison",
                    labels={"value": "Value", "variable": "RAG Method"}
                )
                
                st.plotly_chart(fig, use_container_width=True)
            
            with tab3:
                # Retrieval source comparison
                traditional_sources = ["Traditional Vector Retrieval"] * len(vector_docs)
                
                enhanced_sources = []
                for doc in retrieved_docs:
                    source = doc.metadata.get("source", "unknown")
                    label = {
                        "ontology": "Ontology Context",
                        "text": "Text Context",
                        "ontology_context": "Semantic Context",
                        "semantic_path": "Relationship Path"
                    }.get(source, "Unknown Source")
                    enhanced_sources.append(label)
                
                # Create source distribution chart
                source_counts = {}
                for source in enhanced_sources:
                    if source in source_counts:
                        source_counts[source] += 1
                    else:
                        source_counts[source] = 1
                
                source_df = pd.DataFrame({
                    "Source Type": list(source_counts.keys()),
                    "Document Count": list(source_counts.values())
                })
                
                fig = px.pie(
                    source_df,
                    values="Document Count",
                    names="Source Type",
                    title="Ontology-Enhanced RAG Retrieval Source Distribution"
                )
                
                st.plotly_chart(fig, use_container_width=True)
                
                # Show source-answer relationship
                st.subheader("Relationship Between Sources and Answer")
                st.markdown("""
                Ontology-enhanced methods leverage multiple sources of knowledge to construct more comprehensive answers. The figure above shows the distribution of different sources.
                
                In particular, semantic context and relationship paths provide knowledge that cannot be captured by traditional vector retrieval, enabling the system to connect concepts and perform multi-hop reasoning.
                """)
            
            with tab4:
                # Context quality assessment
                st.subheader("Context Quality Assessment")
                
                # Create evaluation function (simplified)
                def evaluate_context(docs):
                    metrics = {
                        "Direct Relevance": 0,
                        "Semantic Richness": 0,
                        "Structure Information": 0,
                        "Relationship Information": 0
                    }
                    
                    for doc in docs:
                        content = doc.page_content if hasattr(doc, "page_content") else ""
                        
                        # Direct Relevance - Based on Keywords
                        if any(kw in content.lower() for kw in query.lower().split()):
                            metrics["Direct Relevance"] += 1
                        
                        # Semantic richness - based on text length
                        metrics["Semantic Richness"] += min(1, len(content.split()) / 50)
                        
                        # Structural information - from ontology
                        if hasattr(doc, "metadata") and doc.metadata.get("source") in ["ontology", "ontology_context"]:
                            metrics["Structure Information"] += 1
                        
                        # Relationship information - from path
                        if hasattr(doc, "metadata") and doc.metadata.get("source") == "semantic_path":
                            metrics["Relationship Information"] += 1
                    
                    # Standardization
                    for key in metrics:
                        metrics[key] = min(10, metrics[key])
                    
                    return metrics
                
                # Evaluate both methods
                vector_metrics = evaluate_context(vector_docs)
                enhanced_metrics = evaluate_context(retrieved_docs)
                
                # Create comparative radar chart
                metrics_df = pd.DataFrame({
                    "metrics": list(vector_metrics.keys()),
                    "Traditional RAG": list(vector_metrics.values()),
                    "Ontology-Enhanced RAG": list(enhanced_metrics.values())
                })
                
                # # Convert wide-format to long-format
                plot_df = metrics_df.melt(
                    id_vars=["metrics"],
                    value_vars=["Traditional RAG", "Ontology-Enhanced RAG"],
                    var_name="Method",
                    value_name="Value"
                )
                
                # Type confirmation (optional but stable)
                plot_df = plot_df.astype({"metrics": str, "Value": float, "Method": str})
                
                # draw bar_polar graph
                fig = px.bar_polar(
                    plot_df,
                    r="Value",
                    theta="metrics",
                    color="Method",
                    title="Context Quality Assessment (Polar View)",
                    color_discrete_sequence=px.colors.qualitative.Set2
                )
                
                fig.update_layout(polar=dict(radialaxis=dict(visible=True)), showlegend=True)
                st.plotly_chart(fig, use_container_width=True)
                           
                st.markdown("""
                                The figure above shows a comparison of the two RAG methods in terms of context quality. Ontology-enhanced RAG performs better in multiple dimensions:
                                
                                1. **Direct Relevance**: The degree of relevance between the retrieved content and the query
                                2. **Semantic Richness**: Information density and richness of the retrieval context
                                3. **Structural Information**: Structured knowledge of entity types, attributes, and relationships
                                4. **Relationship Information**: Explicit relationships and connection paths between entities
                                
                                The advantage of ontology-enhanced RAG is that it can retrieve structured knowledge and relational information, which are missing in traditional RAG methods.
                                """)
                        
            # Display detailed analysis section
            st.subheader("Method Effectiveness Analysis")
            
            with st.expander("Comparison of Advantages and Disadvantages", expanded=True):
                col1, col2 = st.columns(2)
                
                with col1:
                    st.markdown("#### Traditional RAG")
                    st.markdown("""
                    **Advantages**:
                    - Simple implementation and light computational burden
                    - Works well with unstructured text
                    - Response times are usually faster
                    
                    **Disadvantages**:
                    - Unable to capture relationships between entities
                    - Lack of context for structured knowledge
                    - Difficult to perform multi-hop reasoning
                    - Retrieval is mainly based on text similarity
                    """)
                
                with col2:
                    st.markdown("#### Ontology Enhanced RAG")
                    st.markdown("""
                    **Advantages**:
                    - Ability to understand relationships and connections between entities
                    - Provides rich structured knowledge context
                    - Support multi-hop reasoning and path discovery
                    - Combining vector similarity and semantic relationship
                    
                    **Disadvantages**:
                    - Higher implementation complexity
                    - Need to maintain the ontology model
                    - The computational overhead is relatively high
                    - Retrieval and inference times may be longer
                    """)
            
            # Add usage scenario suggestions
            with st.expander("Applicable Scenarios"):
                st.markdown("""
                ### Traditional RAG Applicable Scenarios
                
                - Simple fact-finding
                - Unstructured document retrieval
                - Applications with high response time requirements
                - When the document content is clear and direct
                
                ### Applicable Scenarios for Ontology Enhanced RAG
                
                - Complex knowledge association query
                - Problems that require understanding of relationships between entities
                - Applications that require cross-domain reasoning
                - Enterprise Knowledge Management System
                - Reasoning scenarios that require high accuracy and consistency
                - Applications that require implicit knowledge discovery
                """)

            # Add practical application examples
            with st.expander("Application Case Studies"):
                st.markdown("""
                ### Enterprise Knowledge Management
                Ontology-enhanced RAG systems can help enterprises effectively organize and access their knowledge assets, connect information in different departments and systems, and provide more comprehensive business insights.
                
                ### Product Development Decision Support
                By understanding the relationship between customer feedback, product features, and market data, the system can provide more valuable support for product development decisions.
                
                ### Complex Compliance Queries
                In compliance problems that require consideration of multiple rules and relationships, ontology-enhanced RAG can provide rule-based reasoning, ensuring that recommendations comply with all applicable policies and regulations.
                
                ### Diagnostics and Troubleshooting
                In technical support and troubleshooting scenarios, the system can connect symptoms, causes, and solutions to provide more accurate diagnoses through multi-hop reasoning.
                """)

if __name__ == "__main__":
    main()