File size: 10,595 Bytes
ae4184d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import time
import asyncio
import traceback
from typing import List, Dict, Any, Optional, Callable, Tuple
from langsmith import traceable

try:
    import config
    from services import retriever, openai_service
except ImportError:
    print("Error: Failed to import config or services in rag_processor.py")
    raise SystemExit("Failed imports in rag_processor.py")

PIPELINE_VALIDATE_GENERATE_GPT4O = "GPT-4o Validator + GPT-4o Synthesizer"
StatusCallback = Callable[[str], None]

# --- Step Functions ---

@traceable(name="rag-step-retrieve")
async def run_retrieval_step(query: str, n_retrieve: int, update_status: StatusCallback) -> List[Dict]:
    update_status(f"1. 诪讗讞讝专 注讚 {n_retrieve} 驻住拽讗讜转 诪-Pinecone...")
    start_time = time.time()
    retrieved_docs = retriever.retrieve_documents(query_text=query, n_results=n_retrieve)
    retrieval_time = time.time() - start_time
    status_msg = f"讗讜讞讝专讜 {len(retrieved_docs)} 驻住拽讗讜转 讘-{retrieval_time:.2f} 砖谞讬讜转."
    update_status(f"1. {status_msg}")
    if not retrieved_docs:
        update_status("1. 诇讗 讗讜转专讜 诪住诪讻讬诐.")
    return retrieved_docs

@traceable(name="rag-step-gpt4o-filter")
async def run_gpt4o_validation_filter_step(
    docs_to_process: List[Dict], query: str, n_validate: int, update_status: StatusCallback
) -> List[Dict]:
    if not docs_to_process:
        update_status("2. [GPT-4o] 讚讬诇讜讙 注诇 讗讬诪讜转 - 讗讬谉 驻住拽讗讜转.")
        return []
    validation_count = min(len(docs_to_process), n_validate)
    update_status(f"2. [GPT-4o] 诪转讞讬诇 讗讬诪讜转 诪拽讘讬诇讬 ({validation_count} / {len(docs_to_process)} 驻住拽讗讜转)...")
    validation_start_time = time.time()
    tasks = [openai_service.validate_relevance_openai(doc, query, i)
             for i, doc in enumerate(docs_to_process[:validation_count])]
    validation_results = await asyncio.gather(*tasks, return_exceptions=True)
    passed_docs = []
    passed_count = failed_validation_count = error_count = 0
    update_status("3. [GPT-4o] 住讬谞讜谉 驻住拽讗讜转 诇驻讬 转讜爪讗讜转 讗讬诪讜转...")
    for i, res in enumerate(validation_results):
        original_doc = docs_to_process[i]
        if isinstance(res, Exception):
            print(f"GPT-4o Validation Exception doc {i}: {res}")
            error_count += 1
        elif isinstance(res, dict) and 'validation' in res:
            if res['validation'].get('contains_relevant_info'):
                original_doc['validation_result'] = res['validation']
                passed_docs.append(original_doc)
                passed_count += 1
            else:
                failed_validation_count += 1
        else:
            print(f"GPT-4o Validation Unexpected result doc {i}: {type(res)}")
            error_count += 1
    validation_time = time.time() - validation_start_time
    status_msg_val = (f"讗讬诪讜转 GPT-4o 讛讜砖诇诐 ({passed_count} 注讘专讜, "
                      f"{failed_validation_count} 谞讚讞讜, {error_count} 砖讙讬讗讜转) "
                      f"讘-{validation_time:.2f} 砖谞讬讜转.")
    update_status(f"2. {status_msg_val}")
    status_msg_filter = f"谞讗住驻讜 {len(passed_docs)} 驻住拽讗讜转 专诇讜讜谞讟讬讜转 诇讗讞专 讗讬诪讜转 GPT-4o."
    update_status(f"3. {status_msg_filter}")
    return passed_docs

@traceable(name="rag-step-openai-generate")
async def run_openai_generation_step(
    history: List[Dict], context_documents: List[Dict],
    update_status: StatusCallback, stream_callback: Callable[[str], None]
) -> Tuple[str, Optional[str]]:
    generator_name = "OpenAI"
    if not context_documents:
        update_status(f"4. [{generator_name}] 讚讬诇讜讙 注诇 讬爪讬专讛 - 讗讬谉 驻住拽讗讜转 诇讛拽砖专.")
        return "诇讗 住讜驻拽讜 驻住拽讗讜转 专诇讜讜谞讟讬讜转 诇讬爪讬专转 讛转砖讜讘讛.", None
    update_status(f"4. [{generator_name}] 诪讞讜诇诇 转砖讜讘讛 住讜驻讬转 诪-{len(context_documents)} 拽讟注讬 讛拽砖专...")
    start_gen_time = time.time()
    try:
        full_response = []
        error_msg = None
        generator = openai_service.generate_openai_stream(
            messages=history, context_documents=context_documents
        )
        async for chunk in generator:
            if isinstance(chunk, str) and chunk.strip().startswith("--- Error:"):
                if not error_msg:
                    error_msg = chunk.strip()
                print(f"OpenAI stream yielded error: {chunk.strip()}")
                break
            if isinstance(chunk, str):
                full_response.append(chunk)
                stream_callback(chunk)
        final_response_text = "".join(full_response)
        gen_time = time.time() - start_gen_time
        if error_msg:
            update_status(f"4. 砖讙讬讗讛 讘讬爪讬专转 讛转砖讜讘讛 ({generator_name}) 讘-{gen_time:.2f} 砖谞讬讜转.")
            return final_response_text, error_msg
        update_status(f"4. 讬爪讬专转 讛转砖讜讘讛 ({generator_name}) 讛讜砖诇诪讛 讘-{gen_time:.2f} 砖谞讬讜转.")
        return final_response_text, None
    except Exception as gen_err:
        gen_time = time.time() - start_gen_time
        error_msg_critical = (f"--- Error: Critical failure during {generator_name} generation "
                              f"({type(gen_err).__name__}): {gen_err} ---")
        update_status(f"4. 砖讙讬讗讛 拽专讬讟讬转 讘讬爪讬专转 讛转砖讜讘讛 ({generator_name}) 讘-{gen_time:.2f} 砖谞讬讜转.")
        traceback.print_exc()
        return "", error_msg_critical

@traceable(name="rag-execute-validate-generate-gpt4o-pipeline")
async def execute_validate_generate_pipeline(
    history: List[Dict], params: Dict[str, Any],
    status_callback: StatusCallback, stream_callback: Callable[[str], None]
) -> Dict[str, Any]:
    result: Dict[str, Any] = {
        "final_response": "",
        "validated_documents_full": [],
        "generator_input_documents": [],
        "status_log": [],
        "error": None,
        "pipeline_used": PIPELINE_VALIDATE_GENERATE_GPT4O
    }
    status_log_internal: List[str] = []

    def update_status_and_log(message: str):
        print(f"Status Update: {message}")
        status_log_internal.append(message)
        status_callback(message)

    current_query_text = ""
    if history and isinstance(history, list):
        for msg_ in reversed(history):
            if isinstance(msg_, dict) and msg_.get("role") == "user":
                current_query_text = str(msg_.get("content") or "")
                break
    if not current_query_text:
        result["error"] = "诇讗 讝讜讛转讛 砖讗诇讛."
        result["final_response"] = f"<div class='rtl-text'>{result['error']}</div>"
        result["status_log"] = status_log_internal
        return result

    try:
        # 1. Retrieval
        retrieved_docs = await run_retrieval_step(
            current_query_text, params['n_retrieve'], update_status_and_log
        )
        if not retrieved_docs:
            result["error"] = "诇讗 讗讜转专讜 诪拽讜专讜转."
            result["final_response"] = f"<div class='rtl-text'>{result['error']}</div>"
            result["status_log"] = status_log_internal
            return result

        # 2. Validation
        validated_docs_full = await run_gpt4o_validation_filter_step(
            retrieved_docs, current_query_text, params['n_validate'], update_status_and_log
        )
        result["validated_documents_full"] = validated_docs_full
        if not validated_docs_full:
            result["error"] = "诇讗 谞诪爪讗讜 驻住拽讗讜转 专诇讜讜谞讟讬讜转."
            result["final_response"] = f"<div class='rtl-text'>{result['error']}</div>"
            update_status_and_log(f"4. {result['error']} 诇讗 谞讬转谉 诇讛诪砖讬讱.")
            return result

        # --- Simplify Docs for Generation ---
        simplified_docs_for_generation: List[Dict[str, Any]] = []
        print(f"Processor: Simplifying {len(validated_docs_full)} docs...")
        for doc in validated_docs_full:
            if isinstance(doc, dict):
                hebrew_text = doc.get('hebrew_text', '')
                validation = doc.get('validation_result')
                if hebrew_text:
                    simplified_doc: Dict[str, Any] = {
                        'hebrew_text': hebrew_text,
                        'original_id': doc.get('original_id', 'unknown')
                    }
                    if doc.get('source_name'):
                        simplified_doc['source_name'] = doc.get('source_name')
                    if validation is not None:
                        simplified_doc['validation_result'] = validation  # include judgment
                    simplified_docs_for_generation.append(simplified_doc)
            else:
                print(f"Warn: Skipping non-dict item: {doc}")
        result["generator_input_documents"] = simplified_docs_for_generation
        print(f"Processor: Created {len(simplified_docs_for_generation)} simplified docs with validation results.")

        # 3. Generation
        final_response_text, generation_error = await run_openai_generation_step(
            history=history,
            context_documents=simplified_docs_for_generation,
            update_status=update_status_and_log,
            stream_callback=stream_callback
        )
        result["final_response"] = final_response_text
        result["error"] = generation_error

        if generation_error and not result["final_response"].strip().startswith(("<div", "诇讗 住讜驻拽讜")):
            result["final_response"] = (
                f"<div class='rtl-text'><strong>砖讙讬讗讛 讘讬爪讬专转 讛转砖讜讘讛.</strong><br>"
                f"驻专讟讬诐: {generation_error}<br>---<br>{result['final_response']}</div>"
            )
        elif result["final_response"] == "诇讗 住讜驻拽讜 驻住拽讗讜转 专诇讜讜谞讟讬讜转 诇讬爪讬专转 讛转砖讜讘讛.":
            result["final_response"] = f"<div class='rtl-text'>{result['final_response']}</div>"

    except Exception as e:
        error_type = type(e).__name__
        error_msg = f"砖讙讬讗讛 拽专讬讟讬转 RAG ({error_type}): {e}"
        print(f"Critical RAG Error: {error_msg}")
        traceback.print_exc()
        result["error"] = error_msg
        result["final_response"] = (
            f"<div class='rtl-text'><strong>砖讙讬讗讛 拽专讬讟讬转! ({error_type})</strong><br>谞住讛 砖讜讘."
            f"<details><summary>驻专讟讬诐</summary><pre>{traceback.format_exc()}</pre></details></div>"
        )
        update_status_and_log(f"砖讙讬讗讛 拽专讬讟讬转: {error_type}")

    result["status_log"] = status_log_internal
    return result