Spaces:
Running
Running
File size: 7,570 Bytes
16d5a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import asyncio
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage
from src.agents.adaptive_chatbot.flow import adaptive_chatbot_agent
from src.utils.logger import logger
# Load environment variables
load_dotenv()
async def test_adaptive_chatbot_flow():
"""
Test the adaptive chatbot flow with different scenarios
"""
print("Testing adaptive chatbot flow...")
# Print the flow diagram
print("\n=== Flow Diagram ===")
print(adaptive_chatbot_agent.get_graph().draw_mermaid())
# Create test cases
test_cases = [
{
"name": "New user query with no previous info",
"state": {
"user_message": "Tôi muốn tìm hiểu về machine learning",
"session_id": "",
"messages_history": [],
"current_system_prompt": "",
"user_profile": {}
}
},
{
"name": "Technical query from user",
"state": {
"user_message": "Có thể giải thích về cách hoạt động của transformer model trong NLP không?",
"session_id": "test-session-1",
"messages_history": [
{"content": "Xin chào", "type": "human"},
{"content": "Xin chào! Tôi có thể giúp gì cho bạn?", "type": "ai"}
],
"current_system_prompt": "Bạn là một trợ lý AI hữu ích, trả lời câu hỏi người dùng một cách chính xác và đầy đủ.",
"user_profile": {
"technical_level": "intermediate",
"preferred_style": "professional",
"interests": ["AI", "machine learning"]
}
}
},
{
"name": "Simple, non-technical query",
"state": {
"user_message": "Thời tiết thế nào ở Hà Nội?",
"session_id": "test-session-2",
"messages_history": [],
"current_system_prompt": "Bạn là một trợ lý AI thân thiện và hữu ích.",
"user_profile": {}
}
}
]
# Run test cases
for i, test_case in enumerate(test_cases):
print(f"\n\n=== Test Case {i+1}: {test_case['name']} ===")
print(f"Input state: {test_case['state']}")
try:
# Add messages tuple if not present
if "messages" not in test_case["state"]:
test_case["state"]["messages"] = [("human", test_case["state"]["user_message"])]
# Execute the flow with the test state
result = await adaptive_chatbot_agent.ainvoke(test_case['state'])
# Display the result
print("\nResult:")
for key, value in result.items():
if key == "messages_history":
print(f" {key}: [... {len(value)} messages ...]")
elif key == "analysis_result":
print(f" {key}: {value}")
elif key == "user_profile":
print(f" {key}: {value}")
elif key == "bot_message" and value:
print(f" {key}: {value[:100]}... (truncated)")
else:
print(f" {key}: {value}")
print("\nFlow execution successful!")
except Exception as e:
print(f"Error executing flow: {e}")
print("\n=== All tests completed ===")
async def test_specific_node():
"""
Test a specific node in the flow
"""
from src.agents.adaptive_chatbot.func import analyze_user_request, generate_probing_questions, update_system_prompt
# Test the analyze_user_request node
print("\n=== Testing analyze_user_request node ===")
state = {
"user_message": "Tôi muốn hiểu sâu hơn về machine learning và các thuật toán",
"session_id": "test-session",
"messages_history": [],
"current_system_prompt": "Bạn là một trợ lý AI hữu ích.",
"user_profile": {},
"messages": [("human", "Tôi muốn hiểu sâu hơn về machine learning và các thuật toán")]
}
try:
analysis_result = await analyze_user_request(state)
print("analyze_user_request node result:")
for key, value in analysis_result.items():
if key == "analysis_result":
print(f" {key}: {value}")
elif key == "prompt_needs_update":
print(f" {key}: {value}")
elif key == "probing_questions_needed":
print(f" {key}: {value}")
except Exception as e:
print(f"Error in analyze_user_request node: {e}")
# Test the generate_probing_questions node
print("\n=== Testing generate_probing_questions node ===")
state = {
"user_message": "Tôi muốn học machine learning",
"session_id": "test-session",
"messages_history": [],
"current_system_prompt": "Bạn là một trợ lý AI hữu ích.",
"user_profile": {},
"analysis_result": {
"intent": "learn_about_topic",
"keywords": ["machine learning"],
"prompt_needs_update": True,
"probing_questions_needed": True
},
"messages": [("human", "Tôi muốn học machine learning")]
}
try:
probing_result = await generate_probing_questions(state)
print("generate_probing_questions node result:")
if "probing_questions" in probing_result:
print(f" probing_questions: {probing_result['probing_questions']}")
except Exception as e:
print(f"Error in generate_probing_questions node: {e}")
# Test the update_system_prompt node
print("\n=== Testing update_system_prompt node ===")
state = {
"user_message": "Tôi muốn học machine learning",
"session_id": "test-session",
"messages_history": [],
"current_system_prompt": "Bạn là một trợ lý AI hữu ích.",
"user_profile": {
"technical_level": "beginner",
"preferred_style": "friendly",
"interests": ["AI", "machine learning"]
},
"analysis_result": {
"intent": "learn_about_topic",
"keywords": ["machine learning"],
"prompt_needs_update": True,
"probing_questions_needed": False
},
"messages": [("human", "Tôi muốn học machine learning")]
}
try:
prompt_result = await update_system_prompt(state)
print("update_system_prompt node result:")
if "updated_system_prompt" in prompt_result:
print(f" updated_system_prompt: {prompt_result['updated_system_prompt']}")
except Exception as e:
print(f"Error in update_system_prompt node: {e}")
if __name__ == "__main__":
# You can choose which test to run:
# 1. Test the entire flow
# 2. Test specific nodes
# Run the async tests
print("Choose a test to run:")
print("1. Test the entire flow")
print("2. Test specific nodes")
choice = input("Enter your choice (1 or 2): ")
if choice == "1":
asyncio.run(test_adaptive_chatbot_flow())
elif choice == "2":
asyncio.run(test_specific_node())
else:
print("Invalid choice. Please run again with a valid option.") |