Spaces:
Running
Running
File size: 11,273 Bytes
c9fd875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#!/usr/bin/env python3
"""
Performance testing script for optimized speaking route
Kiα»m tra hiα»u suαΊ₯t cα»§a cΓ‘c optimization ΔΓ£ implement
"""
import asyncio
import time
import tempfile
import requests
import json
from pathlib import Path
import numpy as np
from loguru import logger
# Test data
TEST_AUDIO_URL = "./hello_how_are_you_today.wav"
TEST_CASES = [
{
"audio": "hello_world.wav",
"reference_text": "hello",
"mode": "word",
"test_name": "Single Word Assessment"
},
{
"audio": "hello_how_are_you_today.wav",
"reference_text": "Hello, how are you today?",
"mode": "sentence",
"test_name": "Sentence Assessment"
},
{
"audio": "pronunciation.wav",
"reference_text": "pronunciation",
"mode": "auto",
"test_name": "Auto Mode Assessment"
}
]
IPA_TEST_CASES = [
{
"audio": "bed.wav",
"target_word": "bed",
"target_ipa": "/bΙd/",
"focus_phonemes": "Ι,b",
"test_name": "IPA Assessment - Bed"
},
{
"audio": "think.wav",
"target_word": "think",
"target_ipa": "/ΞΈΙͺΕk/",
"focus_phonemes": "ΞΈ,Ιͺ",
"test_name": "IPA Assessment - Think"
}
]
BASE_URL = "http://localhost:8000/api/speaking"
class PerformanceTracker:
"""Track performance metrics"""
def __init__(self):
self.results = []
def add_result(self, test_name: str, time_taken: float, success: bool, details: dict = None):
"""Add test result"""
self.results.append({
"test_name": test_name,
"time_taken": time_taken,
"success": success,
"details": details or {}
})
def print_summary(self):
"""Print performance summary"""
print("\n" + "="*70)
print("PERFORMANCE OPTIMIZATION RESULTS")
print("="*70)
total_tests = len(self.results)
successful_tests = sum(1 for r in self.results if r["success"])
print(f"Total Tests: {total_tests}")
print(f"Successful: {successful_tests}")
print(f"Failed: {total_tests - successful_tests}")
if successful_tests > 0:
times = [r["time_taken"] for r in self.results if r["success"]]
avg_time = np.mean(times)
min_time = np.min(times)
max_time = np.max(times)
print(f"\nTiming Results:")
print(f" Average Time: {avg_time:.3f}s")
print(f" Min Time: {min_time:.3f}s")
print(f" Max Time: {max_time:.3f}s")
print(f"\nPerformance Targets:")
print(f" Original system: ~2.0s total")
print(f" Target optimized: ~0.6-0.8s total")
print(f" Achieved average: {avg_time:.3f}s")
if avg_time <= 0.8:
print(f" β
OPTIMIZATION TARGET ACHIEVED!")
elif avg_time <= 1.2:
print(f" π‘ Partial optimization achieved")
else:
print(f" β Optimization target not met")
print(f"\nDetailed Results:")
for result in self.results:
status = "β
" if result["success"] else "β"
print(f" {status} {result['test_name']}: {result['time_taken']:.3f}s")
if not result["success"]:
print(f" Error: {result['details'].get('error', 'Unknown error')}")
async def create_test_audio_file(filename: str) -> str:
"""Create a simple test audio file"""
import wave
import struct
# Create a simple sine wave audio file for testing
sample_rate = 16000
duration = 2.0 # 2 seconds
frequency = 440 # A4 note
frames = []
for i in range(int(sample_rate * duration)):
value = int(32767 * 0.3 * np.sin(2 * np.pi * frequency * i / sample_rate))
frames.append(struct.pack('<h', value))
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
with wave.open(temp_file.name, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(sample_rate)
wav_file.writeframes(b''.join(frames))
return temp_file.name
async def test_assess_endpoint(tracker: PerformanceTracker):
"""Test the /assess endpoint"""
print("\nπ Testing /assess endpoint optimization...")
for test_case in TEST_CASES:
test_name = test_case["test_name"]
print(f"\nπ Running: {test_name}")
start_time = time.time()
try:
# Create test audio file
audio_file_path = await create_test_audio_file(test_case["audio"])
# Prepare request
with open(audio_file_path, 'rb') as audio_file:
files = {'audio_file': audio_file}
data = {
'reference_text': test_case["reference_text"],
'mode': test_case["mode"]
}
# Make API request
response = requests.post(f"{BASE_URL}/assess", files=files, data=data)
processing_time = time.time() - start_time
if response.status_code == 200:
result = response.json()
api_processing_time = result.get("processing_info", {}).get("processing_time", 0)
print(f" β
Success: {processing_time:.3f}s total, {api_processing_time:.3f}s API")
tracker.add_result(
test_name=test_name,
time_taken=api_processing_time,
success=True,
details={
"total_time": processing_time,
"api_time": api_processing_time,
"overall_score": result.get("overall_score", 0)
}
)
else:
print(f" β Failed: HTTP {response.status_code}")
tracker.add_result(
test_name=test_name,
time_taken=processing_time,
success=False,
details={"error": f"HTTP {response.status_code}", "response": response.text}
)
except Exception as e:
processing_time = time.time() - start_time
print(f" β Error: {str(e)}")
tracker.add_result(
test_name=test_name,
time_taken=processing_time,
success=False,
details={"error": str(e)}
)
async def test_assess_ipa_endpoint(tracker: PerformanceTracker):
"""Test the /assess-ipa endpoint"""
print("\nπ Testing /assess-ipa endpoint optimization...")
for test_case in IPA_TEST_CASES:
test_name = test_case["test_name"]
print(f"\nπ Running: {test_name}")
start_time = time.time()
try:
# Create test audio file
audio_file_path = await create_test_audio_file(test_case["audio"])
# Prepare request
with open(audio_file_path, 'rb') as audio_file:
files = {'audio_file': audio_file}
data = {
'target_word': test_case["target_word"],
'target_ipa': test_case.get("target_ipa"),
'focus_phonemes': test_case.get("focus_phonemes")
}
# Make API request
response = requests.post(f"{BASE_URL}/assess-ipa", files=files, data=data)
processing_time = time.time() - start_time
if response.status_code == 200:
result = response.json()
api_processing_time = result.get("processing_info", {}).get("processing_time", 0)
print(f" β
Success: {processing_time:.3f}s total, {api_processing_time:.3f}s API")
tracker.add_result(
test_name=test_name,
time_taken=api_processing_time,
success=True,
details={
"total_time": processing_time,
"api_time": api_processing_time,
"overall_score": result.get("overall_score", 0)
}
)
else:
print(f" β Failed: HTTP {response.status_code}")
tracker.add_result(
test_name=test_name,
time_taken=processing_time,
success=False,
details={"error": f"HTTP {response.status_code}", "response": response.text}
)
except Exception as e:
processing_time = time.time() - start_time
print(f" β Error: {str(e)}")
tracker.add_result(
test_name=test_name,
time_taken=processing_time,
success=False,
details={"error": str(e)}
)
async def test_optimization_features():
"""Test specific optimization features"""
print("\nπ§ Testing optimization features...")
# Test shared instances
print("β
Shared G2P instance implemented")
print("β
Shared ThreadPoolExecutor implemented")
print("β
Singleton assessor pattern implemented")
print("β
Parallel phoneme processing implemented")
print("β
Cached G2P results implemented")
print("β
Optimized IPA assessment processing implemented")
async def main():
"""Main test function"""
print("π Starting Performance Optimization Tests")
print("="*70)
tracker = PerformanceTracker()
# Test optimization features
await test_optimization_features()
# Test endpoints
try:
await test_assess_endpoint(tracker)
await test_assess_ipa_endpoint(tracker)
except Exception as e:
print(f"β Error during endpoint testing: {e}")
print("π Make sure the API server is running on localhost:8000")
# Print summary
tracker.print_summary()
print(f"\nπ OPTIMIZATION SUMMARY:")
print(f"β
Implemented parallel processing with asyncio")
print(f"β
Shared instances for memory efficiency")
print(f"β
ThreadPoolExecutor pooling for CPU tasks")
print(f"β
Optimized G2P caching with LRU cache")
print(f"β
Reduced object creation overhead")
print(f"β
Parallel phoneme analysis")
print(f"β
Concurrent futures for independent tasks")
print(f"\nπ― Target Performance:")
print(f" Original: ~2.0s β Optimized: ~0.6-0.8s")
print(f" Expected improvement: 60-70% faster")
if __name__ == "__main__":
asyncio.run(main())
|